contMat
) and possible additional covariates.MCPtest(formula, data, models, addCovars = ~1,
alpha = 0.025, contMat = NULL, critV = NULL, pVal = TRUE,
alternative = c("one.sided", "two.sided"),
direction = c("increasing", "decreasing"),
na.action = na.fail, mvtcontrol = mvtnorm.control(),
std = TRUE, off, scal)
qmvt
and pmvt
calls in the code, see also mvtnorm.control
for details.off = NULL
by default (maximum dose)*0.1 is
used for off
.scal = NULL
by default (maximum dose)*1.2 is
used for scal
.critVal
## example without covariates
data(biom)
modlist <- list(emax = 0.05, linear = NULL, logistic = c(0.5, 0.1))
fit1 <- MCPtest(resp ~ dose, biom, modlist)
## now calculate critical value (but not p-values)
fit2 <- MCPtest(resp ~ dose, biom, modlist, critV = TRUE, pVal = FALSE)
## now hand over critical value
fit3 <- MCPtest(resp ~ dose, biom, modlist, critV = 2.24)
## example with covariates
data(IBScovars)
modlist <- list(emax = 0.05, linear = NULL, logistic = c(0.5, 0.1))
MCPtest(resp ~ dose, IBScovars, modlist, addCovars = ~gender)
## example with contrast matrix handed over
data(biom)
## calculate a contrast matrix
mu1 <- c(1, 2, 2, 2, 2)
mu2 <- c(1, 1, 2, 2, 2)
mu3 <- c(1, 1, 1, 2, 2)
mMat <- cbind(mu1, mu2, mu3)
dimnames(mMat)[[1]] <- sort(unique(biom$dose))
pM <- planMM(muMat = mMat, doses = doses, n = 20, cV = FALSE)
## perform MCP analysis
MCPtest(resp~dose, data = biom, contMat = pM$contMat)
Run the code above in your browser using DataLab