Learn R Programming

DoseFinding (version 0.9-9)

MCPMod: MCPMod - Multiple Comparisons and Modeling

Description

Tests for a dose-response effect using a model-based multiple contrast test (see MCTtest), selects one (or several) model(s) from the significant shapes, fits them using fitMod. For details on the method see Bretz et al. (2005).

Usage

MCPMod(dose, resp, data, models, S = NULL, type = c("normal", "general"),
       addCovars = ~1, placAdj = FALSE, selModel = c("AIC", "maxT", "aveAIC"),
       alpha = 0.025, df = NULL, critV = NULL, doseType = c("TD", "ED"),
       Delta, p, pVal = TRUE, alternative = c("one.sided", "two.sided"),
       na.action = na.fail, mvtcontrol = mvtnorm.control(),
       bnds, control = NULL)

## S3 method for class 'MCPMod': predict(object, predType = c("full-model", "ls-means", "effect-curve"), newdata = NULL, doseSeq = NULL, se.fit = FALSE, ...)

## S3 method for class 'MCPMod': plot(x, CI = FALSE, level = 0.95, plotData = c("means", "meansCI", "raw", "none"), plotGrid = TRUE, colMn = 1, colFit = 1, ...)

Arguments

dose, resp
Either vectors of equal length specifying dose and response values, or names of variables in the data frame specified in data.
data
Data frame containing the variables referenced in dose and resp if data is not specified it is assumed that dose and resp are variables referenced from data (and no vectors)
models
An object of class "Mods", see Mods for details
S
The covariance matrix of resp when type = "general", see Description.
type
Determines whether inference is based on an ANCOVA model under a homoscedastic normality assumption (when type = "normal"), or estimates at the doses and their covariance matrix and degrees of freedom are specified directly in
addCovars
Formula specifying additive linear covariates (for type = "normal")
placAdj
Logical, if true, it is assumed that placebo-adjusted estimates are specified in resp (only possible for type = "general").
selModel
Optional character vector specifying the model selection criterion for dose estimation. Possible values are
  • AIC: Selects model with smallest AIC (this is the default)
  • maxT: Selects the model corresponding to
alpha
Significance level for the multiple contrast test
df
Specify the degrees of freedom to use in case type = "general", for the call to MCTtest and fitMod. Infinite degrees of (df=Inf)
critV
Supply a pre-calculated critical value. If this argument is NULL, no critical value will be calculated and the test decision is based on the p-values. If critV = TRUE the critical value will be calculated.
doseType, Delta, p
doseType determines the dose to estimate, ED or TD (see also Mods), and Delta and p need to be specified depending on whether TD or ED is to be estimated. See
pVal
Logical determining, whether p-values should be calculated.
alternative
Character determining the alternative for the multiple contrast trend test.
na.action
A function which indicates what should happen when the data contain NAs.
mvtcontrol
A list specifying additional control parameters for the qmvt and pmvt calls in the code, see also mvtnorm.control for details.
bnds
Bounds for non-linear parameters. This needs to be a list with list entries corresponding to the selected bounds. The names of the list entries need to correspond to the model names. The defBnds funct
control
Control list for the optimization. A list with entries: "nlminbcontrol", "optimizetol" and "gridSize". The entry nlminbcontrol needs to be a list and is passed directly to control argument in the nlminb function, that is used internally for model
object, x
MCPMod object
predType, newdata, doseSeq, se.fit, ...
predType determines whether predictions are returned for the full model (including potential covariates), the ls-means (SAS type) or the effect curve (difference to placebo).

newdata gives the covariates to use in producing the predictions (for <

CI, level, plotData, plotGrid, colMn, colFit
Arguments for plot method: CI determines whether confidence intervals should be plotted. level determines the level of the confidence intervals. plotData determines how the data are plotted: Either as means or

Value

  • An object of class MCPMod, which contains the fitted MCTtest object as well as the DRMod objects and additional information (model selection criteria, dose estimates, selected models).

References

Bretz, F., Pinheiro, J. C., and Branson, M. (2005), Combining multiple comparisons and modeling techniques in dose-response studies, Biometrics, 61, 738--748

Pinheiro, J. C., Bornkamp, B., and Bretz, F. (2006). Design and analysis of dose finding studies combining multiple comparisons and modeling procedures, Journal of Biopharmaceutical Statistics, 16, 639--656

Pinheiro, J. C., Bretz, F., and Branson, M. (2006). Analysis of dose-response studies - modeling approaches, in N. Ting (ed.). Dose Finding in Drug Development, Springer, New York, pp. 146--171

Pinheiro, J. C., Bornkamp, B., Glimm, E. and Bretz, F. (2013) Model-based dose finding under model uncertainty using general parametric models, Technical report, preprint available under http://arxiv.org/abs/1305.0889

Bretz, F., Pinheiro, J. C., and Branson, M. (2004), On a hybrid method in dose-finding studies, Methods of Information in Medicine, 43, 457--460

Buckland, S. T., Burnham, K. P. and Augustin, N. H. (1997). Model selection an integral part of inference, Biometrics, 53, 603--618

Seber, G.A.F. and Wild, C.J. (2003). Nonlinear Regression, Wiley.

See Also

MCTtest, fitMod, drmodels

Examples

Run this code
data(biom)
## first define candidate model set (only need "standardized" models)
models <- Mods(linear = NULL, emax=c(0.05,0.2), linInt=c(1, 1, 1, 1),
               doses=c(0,0.05,0.2,0.6,1))
## perform MCPMod procedure
MM <- MCPMod(dose, resp, biom, models, Delta=0.5)
## a number of things can be done with an MCPMod object
MM # print method provides basic information
summary(MM) # more information
## predict all significant dose-response models
predict(MM, se.fit=TRUE, doseSeq=c(0,0.2,0.4, 0.9, 1),
        predType="ls-means")
## display all model functions 
plot(MM, plotData="meansCI", CI=TRUE)

## now perform model-averaging
MM2 <- MCPMod(dose, resp, biom, models, Delta=0.5, selModel = "aveAIC")
sq <- seq(0,1,length=11)
pred <- predict(MM, doseSeq=sq, predType="ls-means")
modWeights <- MM2$selMod
## model averaged predictions
pred <- do.call("cbind", pred)%*%modWeights
## model averaged dose-estimate
TDEst <- MM2$doseEst%*%modWeights

## now an example using a general fit and fitting based on placebo
## adjusted first-stage estimates
data(IBScovars)
## ANCOVA fit model including covariates
anovaMod <- lm(resp~factor(dose)+gender, data=IBScovars)
drFit <- coef(anovaMod)[2:5] # placebo adjusted estimates at doses
vCov <- vcov(anovaMod)[2:5,2:5]
dose <- sort(unique(IBScovars$dose))[-1] # no estimate for placebo
## candidate models
models <- Mods(emax = c(0.5, 1), betaMod=c(1,1), doses=c(0,4))
## hand over placebo-adjusted estimates drFit to MCPMod
MM3 <- MCPMod(dose, drFit, S=vCov, models = models, type = "general",
              placAdj = TRUE, Delta=0.2)
plot(MM3, plotData="meansCI")

## The first example, but with critical value handed over
## this is useful, e.g. in simulation studies
MM4 <- MCPMod(dose, resp, biom, models, Delta=0.5, critV = 2.31)

Run the code above in your browser using DataLab