## Toy exon data: "counts"=inclusion counts, "offsets"=total counts, "groups"=experiment design
data(exon)
## Default will compare "G1" & "G2" using the WEB-Seq method
## and uses ALL groups to estimate dispersion
results.G1G2.WEB <- DBGLM1( counts, offsets, groups)
# Compare G1 & G3
results.G1G3.WEB <- DBGLM1( counts, offsets, groups, contrast=c(1,3))
# Compare G1 & G3. Does not use G2 for dispersion estimation.
results.G1G3.noG2.WEB <- DBGLM1(counts, offsets, groups, contrast=c(1,3), use.all.groups=FALSE)
# Global minimum check of the weight parameter estimate in the WEB-Seq method.
optimPlot( counts, offsets, groups, contrast=c(1,3), use.all.groups=FALSE)
## The DEB-Seq method. Less conservative, more powerful. Very similar ranks to WEB-Seq.
results.G1G2.DEB <- DBGLM1( counts, offsets, groups, shrink.method="DEB")
## M-A Plot
WEB.sig <- rownames(results.G1G2.WEB$Sig)
DB.MAPlot( counts, offsets, groups, de.tags=WEB.sig, main="WEB-Seq")Run the code above in your browser using DataLab