Free Access Week-  Data Engineering + BI
Data engineering and BI courses are free!
Free AI Access Week from June 2-8

Dowd (version 0.12)

FrechetES: Frechet Expected Shortfall

Description

Estimates the ES of a portfolio assuming extreme losses are Frechet distributed, for specified confidence level and a given holding period.

Usage

FrechetES(mu, sigma, tail.index, n, cl, hp)

Arguments

mu
Location parameter for daily L/P
sigma
Scale parameter for daily L/P
tail.index
Tail index
n
Block size from which maxima are drawn
cl
Confidence level
hp
Holding period

Value

Estimated ES. If cl and hp are scalars, it returns scalar VaR. If cl is vector and hp is a scalar, or viceversa, returns vector of VaRs. If both cl and hp are vectors, returns a matrix of VaRs.

Details

Note that the long-right-hand tail is fitted to losses, not profits.

References

Dowd, K. Measuring Market Risk, Wiley, 2007.

Embrechts, P., Kluppelberg, C. and Mikosch, T., Modelling Extremal Events for Insurance and Finance. Springer, Berlin, 1997, p. 324.

Reiss, R. D. and Thomas, M. Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields, Birkhaueser, Basel, 1997, 15-18.

Examples

Run this code
# Computes ES assuming Frechet Distribution for given parameters
   FrechetES(3.5, 2.3, 1.6, 10, .95, 30)

Run the code above in your browser using DataLab