Learn R Programming

⚠️There's a newer version (0.1.6) of this package.Take me there.

DrBats (version 0.1.3)

Data Representation: Bayesian Approach That's Sparse

Description

Feed longitudinal data into a Bayesian Latent Factor Model to obtain a low-rank representation. Parameters are estimated using a Hamiltonian Monte Carlo algorithm with STAN. See G. Weinrott, B. Fontez, N. Hilgert and S. Holmes, "Bayesian Latent Factor Model for Functional Data Analysis", Actes des JdS 2016.

Copy Link

Version

Install

install.packages('DrBats')

Monthly Downloads

231

Version

0.1.3

License

GPL-3

Maintainer

Gabrielle Weinrott

Last Published

May 18th, 2016

Functions in DrBats (0.1.3)

coinertia.drbats

Perform Coinertia Analysis on the PCA of the Weighted PCA and Deville's PCA
histoProj

Project a set of curves onto a histogram basis
clean.mcmc

Post-process an MCMC list with reflection issues
drbats.simul

Main simulation function
modelFit

Fit a Bayesian Latent Factor to a data set using STAN
visbeta

Format scores output for visualization
main.modelFit

Main function to fit the Bayesian Latent Factor model
visW

Plot the estimates for the latent factors
stanfit

A stanfit object fitted to the toydata
calc.loglik

Calculate the log likelihood of the model
pca.Deville

Perform a PCA using Deville's method
coda.obj

Convert a STAN objet to MCMC list
W.QR

Build and decompose a low-rank matrix W
weighted.Deville

Perform a weighted PCA using Deville's method on a data matrix X that we project onto a histogram basis and weighted
pca.proj.Xt

PCA data projected onto a histogram basis
interval.pca.Deville

Perform Interval-PCA using Deville's method
toydata

A toy longitudinal data set
postdens

Calculate the unnormalized posterior density of the model