Learn R Programming

DriveML (version 0.1.0)

autoMAR: Function to identify and generate the Missing at Random features (MAR)

Description

this function will automatically identify the missing pattern and flag the variable if they are not missing at random based on AUC method

Usage

autoMAR(data, aucv = 0.9, strataname = NULL, stratasize = NULL,
  mar_method = "glm")

Arguments

data

dataframe or data.table

aucv

AUC cut-off value for the not missing at random variable selection

strataname

vector of stratification variables

stratasize

vector of stratum sample sizes (in the order in which the strata are given in the input data set).

mar_method

missing at random classification method ("glm", "rf"). Default GLM is used (GLM is run faster for high dimension data)

Value

List output including missing variable summary and number of MAR flag variables

Examples

Run this code
# NOT RUN {
# Create missing at random features
marobj <- autoMAR (heart, aucv = 0.9, strataname = NULL, stratasize = NULL, mar_method = "glm")
# }

Run the code above in your browser using DataLab