powered by
this function for summarise the missing variable, missing pattern identification, classifying the columns based on pattern of missing values.
misspattern(data, mfeature, drop = 0.99, print = FALSE)
[data.frame | Required] data set with missing values
[character | Required] only missing variable name
[numeric | optional] drop variable percentage. Example, if drop = 0.9, function will automatically drop 90per missing columns from the data set
[character | optional] defualt print is FALSE
final variable list, summary of missing data analysis
# NOT RUN { ## Sample iris data mdata <- iris mobject <- misspattern(mdata, mfeature = c("Sepal.Length", "Petal.Length"), drop = 0.99, print = F) # }
Run the code above in your browser using DataLab