Learn R Programming

DySS (version 1.0)

Dynamic Screening Systems

Description

In practice, we will encounter problems where the longitudinal performance of processes needs to be monitored over time. Dynamic screening systems (DySS) are methods that aim to identify and give signals to processes with poor performance as early as possible. This package is designed to implement dynamic screening systems and the related methods. References: Qiu, P. and Xiang, D. (2014) ; Qiu, P. and Xiang, D. (2015) ; Li, J. and Qiu, P. (2016) ; Li, J. and Qiu, P. (2017) ; You, L. and Qiu, P. (2019) ; Qiu, P., Xia, Z., and You, L. (2020) ; You, L., Qiu, A., Huang, B., and Qiu, P. (2020) ; You, L. and Qiu, P. (2021) .

Copy Link

Version

Install

install.packages('DySS')

Monthly Downloads

175

Version

1.0

License

GPL-2 | GPL-3

Maintainer

Lu You

Last Published

July 16th, 2022

Functions in DySS (1.0)

calculate_ATS

Calculate ATS
estimate_pattern_long_surv

Estimate the Pattern of Longitudinal and Survival Data
estimate_pattern_long_1d

Estimate the Regular Longitudinal Pattern of Univariate Data
evaluate_control_chart_one_group

Evaluate Control Charts (in a single dataset)
estimate_pattern_long_md

Estimate the Regular Longitudinal Pattern of Multivariate Data
calculate_signal_times

Calculate Signal Times
data_example_long_1d

A simulated dataset with univariate data
data_example_long_surv

A simulated dataset with longitudinal and survival data
data_stroke

A real data example on stroke
data_example_long_md

A simulated dataset with multivariate longitudinal data
evaluate_control_chart_two_groups

Evaluate Control Charts
monitor_long_surv

Monitor Longitudinal Data for Survival Outcomes
monitor_long_1d

Monitor Univariate Longitudinal Data
search_CL

Search Control Limit
monitor_long_md

Monitor Multivariate Longitudinal Data
plot_evaluation

Evaluate and Visualize Control Charts by ROC curves
plot_PMROC

Evaluate and Visualize Control Charts by PM-ROC curves