- data_array
observed data arranged in a 3d array format.
data_array[i,j,k] is the jth observation of the kth dimension of the ith subject.
- time_matrix
observation times arranged in a numeric matrix format.
time_matrix[i,j] is the jth observation time of the ith subject.
data_array[i,j,] is observed at time_matrix[i,j].
- nobs
number of observations arranged as an integer vector.
nobs[i] is the number of observations for the ith subject.
- starttime
a vector of entry times
starttime[i] is the entry time of the ith subject.
- survtime
a vector of survival times
survtime[i] is the survival time of the ith subject.
- survevent
a logical vector of survival events
If survevents[i]==TRUE, then a survival event is observed at survtime[i].
If survevents[i]==FALSE, then no survival event is observed at survtime[i].
- design_interval
a numeric vector of length two that
gives the left- and right- limits of the design interval.
By default, design_interval=range(time_matrix,na.rm=TRUE).
- n_time_units
an integer value that gives the number of basic time units
in the design time interval.
The design interval will be discretized to seq(design_interval[1],design_interval[2],length.out=n_time_units)
- time_unit
an optional numeric value of basic time unit. Only used when n_time_units is missing.
The design interval will be discretized to seq(design_interval[1],design_interval[2],by=time_unit)
- estimation_method
a string.
If estimation_method="risk", apply the risk monitoring method (c.f., You and Qiu 2020).
(Currently only the method "risk" is available.)
- smoothing_method
a string.
If smoothing_method="local constant", apply local constant smoothing
If smoothing_method="local linear", apply local linear smoothing
- bw_beta
an integer value.
The bandwidth parameter for estimating the regression coefficients beta in the Cox model.
- bw_mean
an integer value.
The bandwidth parameter for estimating mean function.
- bw_var
an integer value.
The bandwidth parameter for estimating variance function.