# NOT RUN {
# simple linear regression models
model1 <- lm(uptake ~ Plant + conc + Plant * conc, data = CO2)
DynNom(model1, CO2)
data1 <- data.frame(state.x77)
model2 <- ols(Life.Exp ~ Population + Income + Illiteracy + Murder + HS.Grad +
Frost + Area,data=data1)
DynNom(model2, data1)
# Generalized regression models
data2 =as.data.frame(Titanic)
model3 <- glm(Survived ~ Age + Class + Sex, data = data2, weights = Freq,
family = binomial("probit"))
DynNom(model3, data2, clevel = 0.9)
model4 <- lrm(formula= vs ~ wt + disp, data = mtcars)
DynNom(model4, mtcars, clevel = 0.9, m.summary = "formatted")
counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)
outcome <- gl(3, 1, 9)
treatment <- gl(3, 3)
data2 = data.frame(counts, outcome, treatment)
model5 <- Glm((2 * counts) ~ outcome + treatment, family = poisson(), data = data2)
DynNom.Glm(model5, data2)
# a proportional hazard model
data.kidney <- kidney
# always make sure that the categorical variables are in a factor class
data.kidney$sex <- as.factor(data.kidney$sex)
levels(data.kidney$sex) <- c("male", "female")
model6 <- coxph(Surv(time, status) ~ age + sex + disease, data.kidney)
DynNom(model6, data.kidney)
DynNom(model6, data.kidney, ptype = "1-st")
model7 <-cph((Surv(log(time), status)) ~ rcs(age, 4) * strat(trt) +
diagtime * strat(prior) + lsp(karno, 60), data = veteran)
DynNom(model7, veteran)
# }
# NOT RUN {
if (interactive()) {
# a poisson regression model
model8 <- glm(event ~ mag + station + dist + accel, data = attenu, family = poisson)
DynNom(model8, attenu, covariate = "numeric")
}
# }
Run the code above in your browser using DataLab