if (FALSE) {
# Simple linear regression models
fit1 <- lm(uptake ~ Plant + conc + Plant * conc, data = CO2)
DNbuilder(fit1)
t.data <- datadist(swiss)
options(datadist = 't.data')
ols(Fertility ~ Agriculture + Education + rcs(Catholic, 4), data = swiss) %>%
DNbuilder(clevel = 0.9, m.summary="formatted")
# Generalized regression models
fit2 <- glm(Survived ~ Age + Class + Sex,
data = as.data.frame(Titanic), weights = Freq, binomial("probit"))
DNbuilder(fit2, DNtitle="Titanic", DNxlab = "Probability of survival")
counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)
outcome <- gl(3, 1, 9)
treatment <- gl(3, 3)
d <- datadist(treatment, outcome)
options(datadist = "d")
Glm((2 * counts) ~ outcome + treatment, family = poisson(),
data = data.frame(counts, outcome, treatment)) %>%
DNbuilder()
# Proportional hazard models
coxph(Surv(time, status) ~ age + strata(sex) + ph.ecog, data = lung) %>%
DNbuilder()
data.kidney <- kidney
data.kidney$sex <- as.factor(data.kidney$sex)
levels(data.kidney$sex) <- c("male", "female")
coxph(Surv(time, status) ~ age + strata(sex) + disease, data.kidney) %>%
DNbuilder(ptype = "1-st")
d <- datadist(veteran)
options(datadist = "d")
fit3 <- cph((Surv(time/30, status)) ~ rcs(age, 4) * strat(trt) + diagtime +
strat(prior) + lsp(karno, 60), veteran)
DNbuilder(fit3, DNxlab = "Survival probability",
KMtitle="Kaplan-Meier plot", KMxlab = "Time (Days)", KMylab = "Survival probability")
# Generalized additive models
mgcv::gam(Fertility ~ s(Agriculture) + Education + s(Catholic), data=swiss) %>%
DNbuilder(DNlimits = c(0, 110), m.summary="formatted")
fit4 <- gam::gam(Fertility ~ Education + Catholic + s(Agriculture), fit=FALSE, data=swiss)
DNbuilder(fit4)
}
if (interactive()) {
data(rock)
lm(area~I(log(peri)), data = rock) %>%
DNbuilder()
}
Run the code above in your browser using DataLab