Learn R Programming

E2E (version 0.1.2)

gbm_pro: Train Gradient Boosting Machine (GBM) for Survival

Description

Fits a stochastic gradient boosting model using the Cox Partial Likelihood distribution. Supports random search for hyperparameter optimization.

Usage

gbm_pro(X, y_surv, tune = FALSE, cv.folds = 5, max_tune_iter = 10)

Value

An object of class survival_gbm and pro_model.

Arguments

X

A data frame of predictors.

y_surv

A Surv object.

tune

Logical. If TRUE, performs random search.

cv.folds

Integer. Number of cross-validation folds.

max_tune_iter

Integer. Maximum iterations for random search.