Learn R Programming

EBEN (version 4.6)

EBEN-package: Empirical Bayesian Elastic Net (EBEN)

Description

Fast EBEN algorithms. EBEN implements a normal and generalized gamma hierearchical priors. ( ** ) Two parameters (alpha, lambda) are equivalent with elastic net priors. ( ** ) When parameter alpha = 1, it is equivalent with EBlasso-NE (normal + exponential) Two models are available for both methods: ( ** ) General linear regression model. ( ** ) Logistic regression model. Multi-collinearity: ( ** ) for group of high correlated or collinear variables: EBEN identifies the group of variables estimates their effects together. ( ** ) group of variables can be selected together. *Epistasis (two-way interactions) can be included for all models/priors *model implemented with memory efficient c code. *LAPACK/BLAS are used for most linear algebra computations.

Arguments

Details

Package:
EBEN
Type:
Package
Version:
4.6
Date:
2015-10-06
License:
gpl

References

key algorithms: Cai, X., Huang, A., and Xu, S. (2011). Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping. BMC Bioinformatics 12, 211. Huang A, Xu S, Cai X. (2013). Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC genetics 14(1):5. Huang, A., Xu, S., and Cai, X. (2014). Empirical Bayesian elastic net for multiple quantitative trait locus mapping. Heredity 10.1038/hdy.2014.79 Other publications: Huang, A., E. Martin, et al. (2014). "Detecting genetic interactions in pathway-based genome-wide association studies." Genet Epidemiol 38(4): 300-309. Huang, A., S. Xu, et al. (2014). "Whole-genome quantitative trait locus mapping reveals major role of epistasis on yield of rice." PLoS ONE 9(1): e87330. Huang, A. (2014). "Sparse model learning for inferring genotype and phenotype associations." Ph.D Dissertation. University of Miami(1186).