Learn R Programming

EDDA (version 1.10.0)

plotPRC: plot precision-recall curves

Description

plot precision-recall curves for each test.

Usage

plotPRC(obj,DE.methods=c("Cuffdiff","DESeq","baySeq","edgeR","MetaStats","NOISeq"), nor.methods=c("default","Mode","UQN","NDE"), plot_type = "o",plot_pch = 20,plot_lwd = 1.75,plot_cex = 1)

Arguments

obj
Object from testDATs().
DE.methods
Method list for differential expression tests. Methods currently available include "Cuffdiff","DESeq","baySeq","edgeR","MetaStats","NOISeq".
nor.methods
Normalization method list. Methods currently available include "default"(default normalization for each DE method),"Mode"(Mode normalization),"UQN"(Upper quartile normalization),"NDE"(non-differential expression normalization).
plot_type
type option in plot.
plot_pch
pch option in plot.
plot_lwd
lwd option in plot.
plot_cex
cex option in plot.

References

Luo Huaien, Li Juntao,Chia Kuan Hui Burton, Shyam Prabhakar, Paul Robson, Niranjan Nagarajan, The importance of study design for detecting differentially abundant features in high-throughput experiments, under review.

Examples

Run this code
data <- generateData(EntityCount=500)
test.obj <- testDATs(data,DE.methods=c("DESeq","edgeR"),nor.methods="default")
auc.obj  <- computeAUC(test.obj)
plotPRC(auc.obj)

Run the code above in your browser using DataLab