Learn R Programming

EDDA (version 1.10.0)

testDATs: Run differential abundance testings

Description

Perform differential abundance testing on simulated count data.

Usage

testDATs(data, numCores=10, minCountsThreshold=0, DE.methods=c("Cuffdiff","DESeq","baySeq","edgeR","MetaStats","NOISeq"), nor.methods=c("default","Mode","UQN","NDE"),method.list=NULL)

Arguments

data
Data object from generateData() function or predifined data object similar to the output of generateData().
numCores
Number of cores for parallelization. Default is 10.
minCountsThreshold
Minimum counts threshold for filtering. Default is 0.
DE.methods
Method list for differential expression tests. Methods currently available include "Cuffdiff","DESeq","baySeq","edgeR","MetaStats","NOISeq".
nor.methods
Normalization method list. Methods currently available include "default" (default normalization for each DE method),"Mode"(Mode normalization), "UQN"(Upper quartile normalization), "NDE"(non-differential expression normalization).
method.list
The method list for the combination of DE.methods and nor.methods. Default is NULL.

Value

data
Data object from generateData() function.
filterCounts
filtered count data.
Cuffdiff
Result form Cuffdiff with default normalization.
Cuffdiff_uqn
Result form Cuffdiff with Upper quartile normalization normalization.
Cuffdiff_Mode
Result form Cuffdiff with Mode normalization.
Cuffdiff_nde
Result form Cuffdiff with non-differential expression normalization.
DESeq
Result form DESeq with default normalization.
DESeq_uqn
Result form DESeq with Upper quartile normalization normalization.
DESeq_Mode
Result form DESeq with Mode normalization.
DESeq_nde
Result form DESeq with non-differential expression normalization.
baySeq
Result form baySeq with default normalization.
baySeq_uqn
Result form baySeq with Upper quartile normalization normalization.
baySeq_Mode
Result form baySeq with Mode normalization.
baySeq_nde
Result form baySeq with non-differential expression normalization.
edgeR
Result form edgeR with default normalization.
edgeR_uqn
Result form edgeR with Upper quartile normalization normalization.
edgeR_Mode
Result form edgeR with Mode normalization.
edgeR_nde
Result form edgeR with non-differential expression normalization.
MetaStats
Result form MetaStats with default normalization.
MetaStats_uqn
Result form MetaStats with Upper quartile normalization normalization.
MetaStats_Mode
Result form MetaStats with Mode normalization.
MetaStats_nde
Result form MetaStats with non-differential expression normalization.
NOISeq
Result form NOISeq with default normalization.
NOISeq_uqn
Result form NOISeq with Upper quartile normalization normalization.
NOISeq_Mode
Result form NOISeq with Mode normalization.
NOISeq_nde
Result form NOISeq with non-differential expression normalization.

References

Luo Huaien, Li Juntao,Chia Kuan Hui Burton, Shyam Prabhakar, Paul Robson, Niranjan Nagarajan, The importance of study design for detecting differentially abundant features in high-throughput experiments, under review.

Examples

Run this code

data <- generateData(EntityCount=100)
test.obj <- testDATs(data,nor.methods="default")
test.obj <- testDATs(data,DE.methods="DESeq")


# test data with input count.
x <- matrix(rnbinom(1000*15,size=1,mu=10), nrow=1000, ncol=15);
x[1:50,11:15] <- x[1:50,11:15]*10
x.name=paste("g",1:1000,sep="");
write.table(cbind(x.name,x),"count.txt",row.names =FALSE, sep ='\t')

x <- read.table("count.txt",head=TRUE,sep='\t')
x.count <- x[,2:16]
x.lable=c(rep(0,10),rep(1,5))
row.names(x.count) <- x[,1]
data <- list(count=x.count,dataLabel=x.lable)
test.obj <- testDATs(data,DE.methods=c("DESeq","edgeR"),nor.methods="default")

Run the code above in your browser using DataLab