# NOT RUN {
set.seed(1)
# Simulate 10x5 MVN data matrix
X=matrix(rnorm(50), nrow=10)
# Estimate covariance matrix
cov.X = cov(X)
# Compute eigenvectors/values
eigen.out = eigen(cov.X)
v1 = eigen.out$vectors[,1]
lambda1 = eigen.out$values[1]
# Print true squared loadings
v1^2
# Compute approximate normed squared eigenvector loadings
computeApproxNormSquaredEigenvector(cov.X=cov.X, v1=v1,
lambda1=lambda1)
# }
Run the code above in your browser using DataLab