Learn R Programming

EFAfactors (version 1.2.2)

plot.EKC: Plot Empirical Kaiser Criterion (EKC) Plot

Description

This function generates an Empirical Kaiser Criterion (EKC) plot to visualize the eigenvalues of the actual data. The EKC method helps in determining the number of factors to retain by identifying the point where the eigenvalues exceed the reference eigenvalue. The plot provides a graphical representation to assist in factor selection.

Usage

# S3 method for EKC
plot(x, ...)

Value

None. This function is used for side effects (plotting).

Arguments

x

An object of class EKC, representing the results to be plotted.

...

Additional arguments to be passed to the plotting function.

See Also

EKC

Examples

Run this code
library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

## Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

# \donttest{
 EKC.obj <- EKC(response)

 ## EKC plot
 plot(EKC.obj)

# }

Run the code above in your browser using DataLab