Free Access Week - Data Engineering + BI
Data Engineering and BI courses are free this week!
Free Access Week - Jun 2-8

⚠️There's a newer version (0.4.6) of this package.Take me there.

EFAtools

The EFAtools package provides functions to perform exploratory factor analysis (EFA) procedures and compare their solutions. The goal is to provide state-of-the-art factor retention methods and a high degree of flexibility in the EFA procedures. This way, implementations from R psych and SPSS can be compared. Moreover, functions for Schmid-Leiman transformation, and computation of omegas are provided. To speed up the analyses, some of the iterative procedures like principal axis factoring (PAF) are implemented in C++.

Installation

You can install the release version from CRAN with:

install.packages("EFAtools")

You can install the development version from GitHub with:

install.packages("devtools")
devtools::install_github("mdsteiner/EFAtools")

To also build the vignette when installing the development version, use:

install.packages("devtools")
devtools::install_github("mdsteiner/EFAtools", build_vignettes = TRUE)

Example

Here are a few examples on how to perform the analyses with the different types and how to compare the results using the COMPARE function. For more details, see the vignette by running vignette("EFAtools", package = "EFAtools"). The vignette provides a high-level introduction into the functionalities of the package.

# load the package
library(EFAtools)

# Run all possible factor retention methods
N_FACTORS(test_models$baseline$cormat, N = 500, method = "ML")
#> Warning in N_FACTORS(test_models$baseline$cormat, N = 500, method = "ML"): ! 'x' was a correlation matrix but CD needs raw data. Skipping CD.
#>                                                                                                                                                                  ◉ 

Copy Link

Version

Install

install.packages('EFAtools')

Monthly Downloads

2,084

Version

0.3.0

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Markus Steiner

Last Published

March 21st, 2025

Functions in EFAtools (0.3.0)

DOSPERT

DOSPERT
COMPARE

Compare two vectors or matrices (communalities or loadings)
DOSPERT_raw

DOSPERT_raw
EFA

Exploratory factor analysis (EFA)
KGC

Kaiser-Guttman Criterion
IDS2_R

Intelligence subtests from the Intelligence and Development Scales--2
KMO

Kaiser-Meyer-Olkin criterion
N_FACTORS

Various Factor Retention Criteria
PARALLEL

Parallel analysis
OMEGA

McDonald's omega
BARTLETT

Bartlett's test of sphericity
EKC

Empirical Kaiser Criterion
CD

Comparison Data
WJIV_ages_3_5

Woodcock Johnson IV: ages 3 to 5
WJIV_ages_40_90

Woodcock Johnson IV: ages 40 to 90 plus
plot.EKC

Plot EKC object
plot.EFA_AVERAGE

Plot EFA_AVERAGE object
GRiPS_raw

GRiPS_raw
FACTOR_SCORES

Estimate factor scores for an EFA model
HULL

Hull method for determining the number of factors to retain
plot.CD

Plot CD object
WJIV_ages_14_19

Woodcock Johnson IV: ages 14 to 19
WJIV_ages_20_39

Woodcock Johnson IV: ages 20 to 39
SL

Schmid-Leiman Transformation
.paf_iter

Perform the iterative PAF procedure
.numformat

Format numbers for print method
print.BARTLETT

Print BARTLETT object
print.HULL

Print function for HULL objects
SCREE

Scree Plot
RiskDimensions

RiskDimensions
.factor_corres

Compute number of non-matching indicator-to-factor correspondences
SMT

Sequential Chi Square Model Tests, RMSEA lower bound, and AIC
.compute_vars

Compute explained variances from loadings
WJIV_ages_6_8

Woodcock Johnson IV: ages 6 to 8
population_models

population_models
plot.SCREE

Plot SCREE object
plot.HULL

Plot HULL object
print.EFA_AVERAGE

Print EFA_AVERAGE object
print.CD

Print function for CD objects
print.KMO

Print KMO object
print.EKC

Print function for EKC objects
print.KGC

Print function for KGC objects
print.SL

Print SL object
print.LOADINGS

Print LOADINGS object
print.N_FACTORS

Print function for N_FACTORS objects
print.OMEGA

Print OMEGA object
print.SMT

Print SMT object
WJIV_ages_9_13

Woodcock Johnson IV: ages 9 to 13
test_models

Four test models used in Grieder and Steiner (2020)
SPSS

Various outputs from SPSS FACTOR
%>%

Pipe operator
.parallel_sim

Parallel analysis on simulated data.
UPPS_raw

UPPS_raw
plot.KGC

Plot KGC object
print.SLLOADINGS

Print SLLOADINGS object
plot.PARALLEL

Plot PARALLEL object
print.EFA

Print EFA object
print.COMPARE

Print COMPARE object
print.PARALLEL

Print function for PARALLEL objects
print.SCREE

Print function for SCREE objects
EFAtools-package

EFAtools: Fast and Flexible Implementations of Exploratory Factor Analysis Tools
EFA_AVERAGE

Model averaging across different EFA methods and types