# NOT RUN {
#cormat <- matrix(c(1, .865, .733, .511, .412, .647, -.462, -.533, -.544,
# .865, 1, .741, .485, .366, .595, -.406, -.474, -.505,
# .733, .741, 1, .316, .268, .497, -.303, -.372, -.44,
# .511, .485, .316, 1, .721, .731, -.521, -.531, -.621,
# .412, .366, .268, .721, 1, .599, -.455, -.425, -.455,
# .647, .595, .497, .731, .599, 1, -.417, -.47, -.521,
# -.462, -.406, -.303, -.521, -.455, -.417, 1, .747, .727,
# -.533, -.474, -.372, -.531, -.425, -.47, .747, 1, .772,
# -.544, -.505, -.44, -.621, -.455, -.521, .727, .772, 1),
# ncol = 9)
#p <- 9 # a number of manifest variables
#m <- 3 # a total number of factors
#m1 <- 2 # a number of endogenous variables
#N <- 138 # a sample size
#mvnames <- c("H1_likelihood", "H2_certainty", "H3_amount", "S1_sympathy",
# "S2_pity", "S3_concern", "C1_controllable", "C2_responsible", "C3_fault")
#fnames <- c('H', 'S', 'C')
# Step 2: Preparing target and weight matrices =========================
# a 9 x 3 matrix for lambda; p = 9, m = 3
#MT <- matrix(0, p, m, dimnames = list(mvnames, fnames))
#MT[c(1:3,6),1] <- 9
#MT[4:6,2] <- 9
#MT[7:9,3] <- 9
#MW <- matrix(0, p, m, dimnames = list(mvnames, fnames))
#MW[MT == 0] <- 1
# a 2 x 3 matrix for [B|G]; m1 = 2, m = 3
# m1 = 2
#BGT <- matrix(0, m1, m, dimnames = list(fnames[1:m1], fnames))
#BGT[1,2] <- 9
#BGT[2,3] <- 9
#BGT[1,3] <- 9
#BGW <- matrix(0, m1, m, dimnames = list(fnames[1:m1], fnames))
#BGW[BGT == 0] <- 1
#BGW[,1] <- 0
#BGW[2,2] <- 0
# a 1 x 1 matrix for Phi.xi; m - m1 = 1 (only one exogenous factor)
#PhiT <- matrix(9, m - m1, m - m1)
#PhiW <- matrix(0, m - m1, m - m1)
#SSEMres <- ssem(covmat = cormat, factors = m, exfactors = m - m1,
# dist = 'normal', n.obs = N, fm = 'ml', rotation = 'semtarget',
# maxit = 10000,
# MTarget = MT, MWeight = MW, BGTarget = BGT, BGWeight = BGW,
# PhiTarget = PhiT, PhiWeight = PhiW, useorder = TRUE, se = 'information',
# mnames = mvnames, fnames = fnames)
#
# }
Run the code above in your browser using DataLab