Learn R Programming

EGAD (version 1.0.3)

build_coexp_expressionSet: Builds a coexpression network from an expressionSet

Description

The function generates a dense coexpression network from expression data stored in the expressionSet data type. Correlation coefficicents are used as to weight the edges of the nodes (genes). Calls build_coexp_network.

Usage

build_coexp_expressionSet(exprsSet, gene.list, method = "spearman", flag = "rank")

Arguments

exprsSet
data class ExpressionSet
gene.list
array of gene labels
method
correlation method to use, default Spearman's rho
flag
string to indicate if the network should be ranked

Value

net Matrix symmetric

Examples

Run this code
exprs <- matrix( rnorm(1000), ncol=10,byrow=TRUE)
gene.list <- paste('gene',1:100, sep='')
sample.list <- paste('sample',1:10, sep='')
rownames(exprs) <- gene.list
colnames(exprs) <- sample.list
network <- build_coexp_expressionSet(exprs, gene.list, method='pearson')

Run the code above in your browser using DataLab