Learn R Programming

⚠️There's a newer version (2.2.0) of this package.Take me there.

EGAnet (version 0.9.8)

Exploratory Graph Analysis - A Framework for Estimating the Number of Dimensions in Multivariate Data Using Network Psychometrics

Description

Implements the Exploratory Graph Analysis (EGA) framework for dimensionality and psychometric assessment. EGA is part of a new area called network psychometrics that uses undirected network models for the assessment of psychometric properties. EGA estimates the number of dimensions (or factors) using graphical lasso or Triangulated Maximally Filtered Graph (TMFG) and a weighted network community detection algorithm. A bootstrap method for verifying the stability of the dimensions and items in those dimensions is available. The fit of the structure suggested by EGA can be verified using Entropy Fit Indices. A novel approach called Unique Variable Analysis (UVA) can be used to identify and reduce redundant variables in multivariate data. Network loadings, which are roughly equivalent to factor loadings when the data generating model is a factor model, are available. Network scores can also be computed using the network loadings. Dynamic EGA (dynEGA) will estimate dimensions from time series data for individual, group, and sample levels. Golino, H., & Epskamp, S. (2017) . Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., & Thiyagarajan, J. A. (2020) . Christensen, A. P., & Golino, H. (under review) . Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020) . Christensen, A. P. & Golino, H. (2019) . Christensen, A. P., Garrido, L. E., & Golino, H. (under review) . Golino, H., Christensen, A. P., Moulder, R. G., Kim, S., & Boker, S. M. (under review) .

Copy Link

Version

Install

install.packages('EGAnet')

Monthly Downloads

3,309

Version

0.9.8

License

GPL (>= 3.0)

Maintainer

Hudson Golino

Last Published

February 16th, 2021

Functions in EGAnet (0.9.8)

EGA.fit

EGA Optimal Model Fit using the Total Entropy Fit Index (tefi)
CFA

CFA Fit of EGA Structure
LCT

Loadings Comparison Test
EGAnet-package

EGAnet--package
EGA.estimate

A Sub-routine Function for EGA
Embed

Time-delay Embedding
EGA

Applies the Exploratory Graph Analysis technique
EBICglasso.qgraph

EBICglasso from qgraph 1.4.4
UVA

Unique Variable Analysis
boot.ergoInfo

Bootstrap Test for the Ergodicity Information Index
mctest.ergoInfo

Monte-Carlo Test for the Ergodicity Information Index
intelligenceBattery

Intelligence Data
bootEGA

itemStability

color_palette_EGA

EGA Color Palettes
boot.wmt

bootEGA Results of wmt2Data
depression

Depression Data
shinyEGA

methods.section

residualEGA

dynEGA

Dynamic Exploratory Graph Analysis
ega.wmt

EGA WMT-2 Data
node.redundant.names

optimism

Optimism Data
entropyFit

Entropy Fit Index
wmt2

WMT-2 Data
tefi

Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
summarys

S3Methods for Summaries
net.scores

Network Scores
net.loads

Network Loadings
dimStability

node.redundant

Detects Redundant Nodes in a Network
dnn.weights

Loadings Comparison Test Deep Learning Neural Network Weights
node.redundant.combine

Combines Redundant Nodes
simDFM

Simulate data following a Dynamic Factor Model
sim.dynEGA

sim.dynEGA Data
dynEGA.ind.pop

Dynamic EGA used in the mctest.ergoInfo function
ergoInfo

Ergodicity Information Index
glla

Generalized Local Linear Approximation
prints

S3Methods for Printing
vn.entropy

Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
totalCor

Total Correlation
totalCorMat

Total Correlation Matrix
toy.example

Toy Example Data
plots

S3Methods for Plotting