Learn R Programming

⚠️There's a newer version (2.2.0) of this package.Take me there.

EGAnet (version 1.0.0)

Exploratory Graph Analysis <e2><80><93> a Framework for Estimating the Number of Dimensions in Multivariate Data using Network Psychometrics

Description

Implements the Exploratory Graph Analysis (EGA) framework for dimensionality and psychometric assessment. EGA is part of a new area called network psychometrics that uses undirected network models for the assessment of psychometric properties. EGA estimates the number of dimensions (or factors) using graphical lasso or Triangulated Maximally Filtered Graph (TMFG) and a weighted network community detection algorithm. A bootstrap method for verifying the stability of the dimensions and items in those dimensions is available. The fit of the structure suggested by EGA can be verified using Entropy Fit Indices. A novel approach called Unique Variable Analysis (UVA) can be used to identify and reduce redundant variables in multivariate data. Network loadings, which are roughly equivalent to factor loadings when the data generating model is a factor model, are available. Network scores can also be computed using the network loadings. Dynamic EGA (dynEGA) will estimate dimensions from time series data for individual, group, and sample levels. Golino, H., & Epskamp, S. (2017) . Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., & Thiyagarajan, J. A. (2020) . Christensen, A. P., & Golino, H. (under review) . Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020) . Christensen, A. P. & Golino, H. (2021) . Christensen, A. P., Garrido, L. E., & Golino, H. (under review) . Golino, H., Christensen, A. P., Moulder, R. G., Kim, S., & Boker, S. M. (under review) .

Copy Link

Version

Install

install.packages('EGAnet')

Monthly Downloads

3,309

Version

1.0.0

License

GPL (>= 3.0)

Maintainer

Hudson Golino

Last Published

November 10th, 2021

Functions in EGAnet (1.0.0)

Embed

Time-delay Embedding
UVA

Unique Variable Analysis
EGA.fit

EGA Optimal Model Fit using the Total Entropy Fit Index (tefi)
EGA

Applies the Exploratory Graph Analysis technique
EGA.estimate

A Sub-routine Function for EGA
EGAnet-package

EGAnet--package
CFA

CFA Fit of EGA Structure
boot.ergoInfo

Bootstrap Test for the Ergodicity Information Index
dnn.weights

Loadings Comparison Test Deep Learning Neural Network Weights
dimensionStability

depression

Depression Data
dynEGA

Dynamic Exploratory Graph Analysis
dynEGA.ind.pop

Dynamic EGA used in the mctest.ergoInfo function
EBICglasso.qgraph

EBICglasso from qgraph 1.4.4
ega.wmt

EGA WMT-2 Data
entropyFit

Entropy Fit Index
ergoInfo

Ergodicity Information Index
bootEGA

LCT

Loadings Comparison Test
boot.wmt

bootEGA Results of wmt2Data
simDFM

Simulate data following a Dynamic Factor Model
glla

Generalized Local Linear Approximation
summarys

S3Methods for Summaries
itemStability

color_palette_EGA

EGA Color Palettes
compare.EGA.plots

methods.section

net.scores

Network Scores
optimism

Optimism Data
mctest.ergoInfo

Monte-Carlo Test for the Ergodicity Information Index
prints

S3Methods for Printing
plots

S3Methods for Plotting
intelligenceBattery

Intelligence Data
totalCorMat

Total Correlation Matrix
tefi

Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
net.loads

Network Loadings
totalCor

Total Correlation
toy.example

Toy Example Data
residualEGA

shinyEGA

sim.dynEGA

sim.dynEGA Data
network.descriptives

Descriptive Statistics for Networks
vn.entropy

Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
wmt2

WMT-2 Data