
Last chance! 50% off unlimited learning
Sale ends in
EGA
StructureVerifies the fit of the structure suggested by EGA
using confirmatory factor analysis
CFA(ega.obj, data, estimator, plot.CFA = TRUE, layout = "spring", ...)
Returns a list containing:
Output from cfa
Summary output from lavaan-class
Fit measures: chi-squared,
degrees of freedom, p-value, CFI, RMSEA, GFI, and NFI.
Additional fit measures can be applied using the
fitMeasures
function (see examples)
An EGA
object
A dataframe with the variables to be used in the analysis
The estimator used in the confirmatory factor analysis.
'WLSMV' is the estimator of choice for ordinal variables.
'ML' or 'WLS' for interval variables.
See lavOptions
for more details
Logical. Should the CFA structure with its standardized loadings be plot? Defaults to TRUE
Layout of plot (see semPaths
).
Defaults to "spring"
Arguments passed to cfa
Hudson F. Golino <hfg9s at virginia.edu>
Christensen, A. P., Gross, G. M., Golino, H., Silvia, P. J., & Kwapil, T. R. (2019). Exploratory graph analysis of the Multidimensional Schizotypy Scale. Schizophrenia Research, 206, 43-51.
Golino, H., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE, 12, e0174035.
EGA
to estimate the number of dimensions of an instrument using EGA and
bootEGA
to investigate the stability of EGA's estimation via bootstrap.
# Load data
wmt <- wmt2[,7:24]
# Fast for CRAN
cor.wmt <- cor(wmt)
# Estimate EGA
ega.wmt <- EGA(data = wmt, n = nrow(wmt2), plot.EGA = FALSE)
# \donttest{
# Estimate EGA
ega.wmt <- EGA(data = wmt, plot.EGA = FALSE)
# Fit CFA model to EGA results
cfa.wmt <- CFA(ega.obj = ega.wmt, estimator = 'WLSMV', plot.CFA = TRUE, data = wmt)
# Additional fit measures
lavaan::fitMeasures(cfa.wmt$fit, fit.measures = "all")
# }
# Load data
intel <- intelligenceBattery[,8:66]
# \donttest{
# Estimate EGA
ega.intel <- EGA(data = intel, plot.EGA = FALSE)
# Fit CFA model to EGA results
cfa.intel <- CFA(ega.obj = ega.intel, estimator = 'WLSMV', plot.CFA = TRUE,
data = intel)
# }
Run the code above in your browser using DataLab