Computes the fit of a dimensionality structure using Von Neumman's entropy when the input is a correlation matrix. Lower values suggest better fit of a structure to the data
vn.entropy(data, structure)
Returns a list containing:
The Entropy Fit Index using Von Neumman's entropy
The total correlation of the dataset
The average entropy of the dataset
Matrix or data frame. Contains variables to be used in the analysis
Numeric or character vector (length = ncol(data)
).
A vector representing the structure (numbers or labels for each item).
Can be theoretical factors or the structure detected by EGA
Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Robert Moulder <rgm4fd@virginia.edu>
Initial formalization and simulation
Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020).
Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables.
Multivariate Behavioral Research.
# Get EGA result
ega.wmt <- EGA(
data = wmt2[,7:24], model = "glasso",
plot.EGA = FALSE # no plot for CRAN checks
)
# Compute Von Neumman entropy
vn.entropy(ega.wmt$correlation, ega.wmt$wc)
Run the code above in your browser using DataLab