Learn R Programming

EMA (version 1.4.4)

clustering.plot: Clustering plots for one or two ways representation

Description

Creates plots for a clustering analysis.

Usage

clustering.plot(tree, tree.sup, data, lab, lab.sup, dendro=TRUE, dendro.sup=TRUE, title="", scale="row", heatcol, names=TRUE, names.sup=TRUE, names.dist=TRUE, trim.heatmap=1, palette="rainbow", legend=TRUE, legend.pos="topright", ...)

Arguments

tree
an object of class 'agnes' representing the first clustering.
tree.sup
optional - an object of class 'agnes' representing the second clustering.
data
optional - expression data for the heatmap plot
lab
optional - a matrix or data.frame of labels for 'tree' (by columns)
lab.sup
optional - a matrix or data.frame of labels for 'tree.sup' (by columns)
dendro
display dendrogram of tree object - The default is TRUE
dendro.sup
display dendogram of tree.sup object - The default is TRUE
title
optional - title of the graphic
scale
optional - character indicating if the values should be centered and scaled in either the row direction (gene) or the column direction (sample),or none. The default is '"row"'
heatcol
colors for the heatmap generated by myPalette
names
optional - if names=FALSE, the labels for 'tree' are not written - The default is TRUE
names.sup
optional - if names.sup=FALSE, the labels for 'tree.sup' are not written - The default is TRUE
names.dist
Display the distance used for the Hierachical Clustering - The default is TRUE
trim.heatmap
Percentile of the data to be trimmed. This helps to keep an informative color scale in the heatmap
palette
Palette used for color selection. see as.colors()
legend
Draw legend of the labels. Default is TRUE
legend.pos
Position of the legend (topright, topleft, bottomright, bottomleft). Default is topright
...
Arguments to be passed to methods, such as graphical parameters (see 'par').

Details

If the data matrix is specified, the function draws a clustering using the heatmap representation. If tree.sup is specified the function draws a two-ways clustering using the heatmap representation. Otherwise, a classical dendrogram is displayed. If a labels matrix is specified, each column of the matrix is represented under the dendrogram. If a pdfname is specified, the output is a pdf file. Setting 'trim.heatmap' to a number between 0 and 1 uses equidistant classes between the (trim.heatmap)- and (1-trim.heatmap)-quantile, and lumps the values below and above this range into separate open-ended classes. If the data comes from a heavy-tailed distribution, this can save the display from putting too many values into to few classes.

See Also

clustering, heatmap.plus

Examples

Run this code
data(marty)

##Clustering on 50 most variant genes amongst 500 first 
mv.genes<-genes.selection(marty[1:500,], thres.num=50)
c.sample<-clustering(marty[mv.genes,], metric="pearson", metho="ward")
clustering.plot(c.sample, lab=marty.type.cl, title="H.Clustering\nPearson-Ward")

c.gene<-clustering(data=t(marty[mv.genes,]), metric="pearson",method="ward")

##Two-ways clustering
clustering.plot(tree=c.sample, tree.sup=c.gene, data=marty[mv.genes,], trim.heatmap=0.99)

Run the code above in your browser using DataLab