This function extracts intrinsic mode function from given a signal.
extractimf(residue, tt=NULL, tol=sd(residue)*0.1^2, max.sift=20,
stoprule="type1", boundary="periodic", sm="none", spar=NULL,
alpha=NULL, check=FALSE, weight=NULL)
observation or signal observed at time tt
observation index or time index
tolerance for stopping rule of sifting. If stoprule=type5
, the number of iteration for S stoppage criterion.
the maximum number of sifting
stopping rule of sifting. The type1
stopping rule indicates that absolute values of envelope mean must be less than the user-specified tolerance level
in the sense that the local average of upper and lower envelope is zero.
The stopping rules type2
, type3
, type4
and type5
are the stopping rules given by equation (5.5) of Huang et al. (1998), equation (11a),
equation (11b) and S stoppage of Huang and Wu (2008), respectively.
specifies boundary condition from ``none", ``wave", ``symmetric", ``periodic" or ``evenodd". See Zeng and He (2004) for evenodd
boundary condition.
specifies whether envelop is constructed by interpolation, spline smoothing, kernel smoothing, or local polynomial smoothing. Use ``none" for interpolation, ``spline" for spline smoothing, ``kernel" for kernel smoothing, or ``locfit" for local polynomial smoothing. See Kim et al. (2012) for detalis.
specifies user-supplied smoothing parameter of spline smoothing, kernel smoothing, or local polynomial smoothing.
deprecated.
specifies whether the sifting process is displayed. If check=TRUE
, click the plotting area to start the next step.
deprecated.
imf
residue signal after extracting the finest imf from residue
the number of iteration to obtain the imf
This function extracts intrinsic mode function from given a signal.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society London A, 454, 903--995.
Huang, N. E. and Wu, Z. (2008) A review on Hilbert-Huang Transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46, RG2006.
Kim, D., Kim, K.-O. and Oh, H.-S. (2012) Extending the Scope of Empirical Mode Decomposition using Smoothing. EURASIP Journal on Advances in Signal Processing, 2012:168, doi: 10.1186/1687-6180-2012-168.
Zeng, K and He, M.-X. (2004) A simple boundary process technique for empirical mode decomposition. Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium, 6, 4258--4261.
# NOT RUN {
### Generating a signal
ndata <- 3000
par(mfrow=c(1,1), mar=c(1,1,1,1))
tt2 <- seq(0, 9, length=ndata)
xt2 <- sin(pi * tt2) + sin(2* pi * tt2) + sin(6 * pi * tt2) + 0.5 * tt2
plot(tt2, xt2, xlab="", ylab="", type="l", axes=FALSE); box()
### Extracting the first IMF by sifting process
tryimf <- extractimf(xt2, tt2, check=FALSE)
# }
Run the code above in your browser using DataLab