calculate_cvm_gene(vec, outcomes, sample_names)
vec
.vec
.vec
is divided based on class labels based on the outcomes
identifiers given. For each pairwise computation, the hist
function is
used to generate histograms for the two groups. The densities are then retrieved
and passed to CramerVonMisesTwoSamples
to compute the pairwise CVM score. The
total CVM score for the given data is the average of the pairwise CVM scores.
CramerVonMisesTwoSamples
# 100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")
# "A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))
names(outcomes) <- colnames(dat)
calculate_cvm_gene(dat[1,], outcomes, colnames(dat))
Run the code above in your browser using DataLab