set.seed(040590)
X1 <- as.data.frame(
array(
data = rbinom(n = 50 * 1000, size = 1,
prob = runif(n = 50 * 1000, 0, 1)), dim = c(1000, 50)
)
)
Y1 <- rnorm(
n = 1000,
mean = 1 + 0.7 * (X1$V1 * X1$V4) + 0.8896846 * (X1$V8 * X1$V11) + 1.434573 * (X1$V5 * X1$V9),
sd = 1
)
X1$Y1 <- Y1
# specify the initial formula
formula1 <- as.formula(
paste(colnames(X1)[51], "~ 1 +", paste0(colnames(X1)[-c(51)], collapse = "+"))
)
data.example <- as.data.frame(X1)
# run the inference with robust g prior
n_cores <- 1L
# \donttest{
res4G <- LogicRegr(
formula = formula1, data = data.example, family = "Gaussian", prior = "G",
report.level = 0.5, d = 15, cmax = 2, kmax = 15, p.and = 0.9, p.not = 0.01,
p.surv = 0.2, ncores = n_cores
)
print(res4G$feat.stat)
# run the inference with Jeffrey's prior
res4J <- LogicRegr(
formula = formula1, data = data.example, family = "Gaussian", prior = "J",
report.level = 0.5, d = 15, cmax = 2, kmax = 15, p.and = 0.9, p.not = 0.01,
p.surv = 0.2, ncores = n_cores
)
print(res4J$feat.stat)
# }
Run the code above in your browser using DataLab