Learn R Programming

EMMAgeo (version 0.9.4)

get.q: Generate a parameter matrix with q.min and q.max values for robust EMMA.

Description

This function uses the input data matrix X and a vector of weight transformation limits to generate a matrix of minimum and maximum likely numbers of end-members to be used to model and extract robust end-members.

Usage

get.q(X, l = 0, q.min = 2, q.max = 10, criteria.min = 0.5,
  criteria.max = "local_max", correct.output = TRUE, ...)

Arguments

X

Numeric matrix with m samples (rows) and n variables (columns).

l

Numeric vector, weight transformation limits, default is zero.

q.min

Numeric scalar, minimum number of end-members to use, default is 2.

q.max

Numeric scalar, maximum number of end-members to use, default is 10.

criteria.min

Numeric scalar, minimum value of explained variance reached to be a valid model realisation, default is 0.5.

criteria.max

Character or numeric scalar, either keyword "local_max" to use first local maximum or any numeric value of explained variance, default is "local_max".

correct.output

Logical scalar, option to correct the output for twisted values and remove combinations with NA-values.

...

Further arguments, passed to the function.

Value

Numeric matrix with minimum and maximum numbers of end-members as well as corresponding weight transformation values as rownames.

References

Dietze E, Hartmann K, Diekmann B, IJmker J, Lehmkuhl F, Opitz S, Stauch G, Wuennemann B, Borchers A. 2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology 243-244: 169-180.

See Also

EMMA, test.parameters, test.robustness

Examples

Run this code
# NOT RUN {
## load example data set
data(X, envir = environment())

## create parameter matrix
get.q(X = X, l = c(0, 0.05, 0.10, 0.15))
# }

Run the code above in your browser using DataLab