Calculate the distances.
getSWR(dat,g,sigma,clust, tau)
intradist(dat,g,sigma, clust, tau)
interdist(dat,g,sigma, clust, tau)
mahalonobis(p, g, mu, sigma)
The dataset, an n by p numeric matrix, where n is number of observations and p the dimension of data.
The dimension of the data
The number of components to be fit
A numeric matrix with each column corresponding to the mean
An array of dimension (p,p,g) with first two dimensions corresponding covariance matrix of each component
A vector of integers specifying the initial partitions of the data; the default is NULL.
An n by g matrix of posterior probability for each data point