Learn R Programming

EMSNM (version 1.0)

EM Algorithm for Sigmoid Normal Model

Description

It provides a method based on EM algorithm to estimate the parameter of a mixture model, Sigmoid-Normal Model, where the samples come from several normal distributions (also call them subgroups) whose mean is determined by co-variable Z and coefficient alpha while the variance are homogeneous. Meanwhile, the subgroup each item belongs to is determined by co-variables X and coefficient eta through Sigmoid link function which is the extension of Logistic Link function. It uses bootstrap to estimate the standard error of parameters. When sample is indeed separable, removing estimation with abnormal sigma, the estimation of alpha is quite well. I used this method to explore the subgroup structure of HIV patients and it can be used in other domains where exists subgroup structure.

Copy Link

Version

Install

install.packages('EMSNM')

Monthly Downloads

181

Version

1.0

License

GPL (>= 2)

Maintainer

Linsui Deng

Last Published

April 25th, 2019

Functions in EMSNM (1.0)

Ccompute

Ccompute
EMsimulation

Simulation For Estimation
Ggenerate

Subgroup Determination
Wgenerate

Sigmoid Logistic Data Generation
fnorm

Density Value
update_eta

Updata Eta
update_gamma

Updata Alpha and Sigma
EM_parameter_sd

Bootstrap Parameter Inference
EM_result_sort

Sort Parameter
softmax

Softmax Value
standard

Data Standardlization
EMalgorithm

Parameter Estimation
EMbootstrap

Bootstrap Method
weight_matrix

Weighted Inner Product
EMSNM-package

EMSNM