Learn R Programming

ENmix (version 1.8.0)

rcp: Regression on Correlated Probes(RCP)

Description

Probe design type bias correction using Regression on Correlated Probes (RCP) method

Usage

rcp(mdat, dist=25, quantile.grid=seq(0.001,0.999,by=0.001), qcscore = NULL, nbthre=3, detPthre=0.000001)

Arguments

mdat
An object of class MethylSet.
dist
Maximum distance in base pair between type I and type II probe pairs for regression calibration
quantile.grid
Quantile grid used in linear regression
qcscore
If the data quality infomation (the output from function QCinfo) is provied, low quality data points as defined by detection p value threshold (detPthre=0.000001) or number of bead threshold (nbthre=3) will be set to missing.
detPthre
Detection P value threshold to define low qualitye data points, detPthre=0.000001 in default.
nbthre
Number of beads threshold to define low qualitye data points, nbthre=3 in default.

Value

A beta value matrix

Details

The function will first identify type I and type II probe pairs within specified distance, and then perform linear regression between the probe types to estimate regression coefficients. With the estimates the function will then calibrates type II data using type I data as references.

References

Liang Niu, Zongli Xu and Jack A. Taylor RCP: a novel probe design bias correction method for Illumina Methylation BeadChip, Bioinformatics 2016

Examples

Run this code
if(FALSE){
if (require(minfiData)) {
mdat=preprocessENmix(RGsetEx,bgParaEst="oob",nCores=6)
mdatq1=normalize.quantile(mdat,method="quantile1")
beta=rcp(mdatq1)
}}

Run the code above in your browser using DataLab