if(FALSE){
if (require(minfiData)) {
sheet <- read.450k.sheet(file.path(find.package("minfiData"),"extdata"), pattern = "csv$")
rgSet <- read.450k.exp(targets = sheet,extended = TRUE)
qcscore<-QCinfo(rgSet)
mdat <- preprocessRaw(rgSet)
beta=getBeta(mdat, "Illumina")
#filter out outliers
b1=rm.outlier(beta)
#filter out low quality and outlier values
b2=rm.outlier(beta,qcscore=qcscore)
#filter out low quality and outlier values, remove rows and columns with too many missing values
b3=rm.outlier(beta,qcscore=qcscore,rmcr=TRUE)
#filter out low quality and outlier values, remove rows and columns with too many missing values, and then do imputation
b3=rm.outlier(beta,qcscore=qcscore,rmcr=TRUE,impute=TRUE)
}}
Run the code above in your browser using DataLab