Learn R Programming

EQUALSTATS (version 0.5.0)

function.read_data: Read a CSV File and Classify Variable Type

Description

When an user uploads a file in 'EQUAL-STATS' program, the program can automatically classify the variable types based on the nature of the data uploaded. The data and data types are stored in memory. This then determines the options available for questions and the analysis performed. The variable types can be altered using function.read_metadata.

Usage

function.read_data(data_file_path)

Value

outcome

Whether the import was successful.

message

The message displayed to the user after the processing. This message also contains the reason for failure if the import was unsuccessful.

data

Imported data

any_type

All variables in the data

quantitative

Quantitative variables in the data

counts

Count variables in the data

categorical

Categorical variables in the data

nominal

Categorical variables without any order in the data

binary

Categorical variables with only two possible categories (factors/levels) in the data

ordinal

Ordered categorical variables

date

Any variables that appear like date

time

Any variables that appear like time

Arguments

data_file_path

The path to the data file.

Author

Kurinchi Gurusamy

References

https://sites.google.com/view/equal-group/home

See Also

function.read_metadata()

Examples

Run this code
# Create simulated data ####
data <- cbind.data.frame(
  `Subject ID` = c(
    "S0001", "S0002", "S0003", "S0004", "S0005",
    "S0006", "S0007", "S0008", "S0009", "S0010",
    "S0011", "S0012", "S0013", "S0014", "S0015",
    "S0016", "S0017", "S0018", "S0019", "S0020",
    "S0021", "S0022", "S0023", "S0024", "S0025",
    "S0026", "S0027", "S0028", "S0029", "S0030"),
  `Centre` = c(
    "C_0001", "C_0002", "C_0002", "C_0002", "C_0002",
    "C_0001", "C_0001", "C_0003", "C_0001", "C_0003",
    "C_0001", "C_0002", "C_0002", "C_0001", "C_0003",
    "C_0002", "C_0002", "C_0003", "C_0001", "C_0002",
    "C_0002", "C_0002", "C_0002", "C_0003", "C_0002",
    "C_0001", "C_0003", "C_0001", "C_0001", "C_0001"),
  `Treatment` = c(
    "Intensive rehabilitation", "Intensive rehabilitation", "Standard rehabilitation",
    "Intensive rehabilitation", "Intensive rehabilitation", "Intensive rehabilitation",
    "Intensive rehabilitation", "Intensive rehabilitation", "Intensive rehabilitation",
    "Standard rehabilitation", "Intensive rehabilitation", "Standard rehabilitation",
    "Standard rehabilitation", "Intensive rehabilitation", "Intensive rehabilitation",
    "Intensive rehabilitation", "Standard rehabilitation", "Standard rehabilitation",
    "Intensive rehabilitation", "Standard rehabilitation", "Intensive rehabilitation",
    "Intensive rehabilitation", "Standard rehabilitation", "Intensive rehabilitation",
    "Intensive rehabilitation", "Standard rehabilitation", "Standard rehabilitation",
    "Intensive rehabilitation", "Standard rehabilitation", "Intensive rehabilitation"),
  `Obesity status` = c(
    "Obese", "Non-obese", "Obese", "Non-obese", "Non-obese",
    "Obese", "Obese", "Obese", "Non-obese", "Obese",
    "Non-obese", "Non-obese", "Obese", "Non-obese", "Obese",
    "Obese", "Non-obese", "Obese", "Obese", "Obese",
    "Non-obese", "Non-obese", "Non-obese", "Obese", "Obese",
    "Non-obese", "Obese", "Obese", "Obese", "Obese"),
  `Unable to walk independently at 6 weeks` = c(
    "unable", "able", "able", "unable", "able",
    "able", "unable", "unable", "unable", "unable",
    "able", "unable", "able", "unable", "unable",
    "able", "unable", "unable", "unable", "unable",
    "able", "able", "able", "able", "unable",
    "able", "able", "unable", "able", "unable"),
  `Mobility score at 6 months` = c(
    86, 65.1, 48, 99.8, 73.4, 70, 74.7, 36.5, 64.6, 85.4,
    41.7, 60.1, 73.3, 42.4, 55.3, 47.3, 85.9, 63, 64.6, 101.8,
    108.1, 72.3, 96.4, 87.5, 66.2, 92.9, 47.7, 55.8, 56.4, 133.8),
  `Pain at 6 weeks` = c(
    "3_severe", "1_mild", "1_mild", "2_moderate", "1_mild",
    "1_mild", "2_moderate", "2_moderate", "1_mild", "3_severe",
    "1_mild", "2_moderate", "1_mild", "3_severe", "3_severe",
    "1_mild", "2_moderate", "3_severe", "2_moderate", "2_moderate",
    "1_mild", "1_mild", "1_mild", "1_mild", "2_moderate",
    "1_mild", "1_mild", "2_moderate", "1_mild", "2_moderate"),
  `Number of falls within 6 months` = c(
    3, 2, 3, 2, 2, 1, 4, 2, 2, 5,
    3, 2, 2, 2, 5, 3, 2, 2, 3, 4,
    3, 1, 2, 2, 2, 7, 2, 1, 1, 8),
  `Mobility score at 12 months` = c(
    90, 69.1, 52, 103.8, 77.4, 74, 78.7, 40.5, 68.6, 89.4,
    45.7, 64.1, 77.3, 46.4, 59.3, 51.3, 89.9, 67, 68.6, 105.8,
    112.1, 76.3, 100.4, 91.5, 70.2, 96.9, 51.7, 59.8, 60.4, 137.8)
)
# Store this in a folder
data_file_path = paste0(tempdir(), "/data.csv")
write.csv(data, file = data_file_path, row.names = FALSE, na = "")
# Load the necessary packages
library(stringr)
# Final function ####
imported_data_types <- function.read_data(data_file_path)

Run the code above in your browser using DataLab