## generate vectors of industrial and population count
ind <- c(0, 10, 10, 30, 50)
pop <- c(10, 15, 20, 25, 30)
## run the function (30% of the population produces 50% of the industrial output)
hoover_curve (ind, pop)
hoover_curve (ind, pop, pdf = FALSE)
hoover_curve (ind, pop, plot = FALSE)
## generate a region - industry matrix
mat = matrix (
c (0, 10, 0, 0,
0, 15, 0, 0,
0, 20, 0, 0,
0, 25, 0, 1,
0, 30, 1, 1), ncol = 4, byrow = TRUE)
rownames(mat) <- c ("R1", "R2", "R3", "R4", "R5")
colnames(mat) <- c ("I1", "I2", "I3", "I4")
## run the function
hoover_curve (mat, pop)
hoover_curve (mat, pop, plot = FALSE)
## run the function by aggregating all industries
hoover_curve (rowSums(mat), pop)
hoover_curve (rowSums(mat), pop, plot = FALSE)
## run the function for industry #1 only
hoover_curve (mat[,1], pop)
hoover_curve (mat[,1], pop, plot = FALSE)
## run the function for industry #2 only (perfectly proportional to population)
hoover_curve (mat[,2], pop)
hoover_curve (mat[,2], pop, plot = FALSE)
## run the function for industry #3 only (30% of the pop. produces 100% of the output)
hoover_curve (mat[,3], pop)
hoover_curve (mat[,3], pop, plot = FALSE)
## run the function for industry #4 only (55% of the pop. produces 100% of the output)
hoover_curve (mat[,4], pop)
hoover_curve (mat[,4], pop, plot = FALSE)
## Compare the distribution of the #industries
oldpar <- par(mfrow = c(2, 2)) # Save the current graphical parameter settings
hoover_curve (mat[,1], pop)
hoover_curve (mat[,2], pop)
hoover_curve (mat[,3], pop)
hoover_curve (mat[,4], pop)
par(oldpar) # Reset the graphical parameters to their original values
## Save output as pdf
hoover_curve (mat, pop, pdf = TRUE)
## To specify an output directory for the pdf,
## specify 'pdf_location', for instance as '/Users/jones/hoover_curve.pdf'
## hoover_curve(mat, pop, pdf = TRUE, pdf_location = '/Users/jones/hoover_curve.pdf')
Run the code above in your browser using DataLab