# currently supported methods
sbea.methods()
# (1) reading the expression data from file
exprs.file <- system.file("extdata/ALL_exprs.tab", package="EnrichmentBrowser")
pdat.file <- system.file("extdata/ALL_pData.tab", package="EnrichmentBrowser")
fdat.file <- system.file("extdata/ALL_fData.tab", package="EnrichmentBrowser")
probe.eset <- read.eset(exprs.file, pdat.file, fdat.file)
# (2) summarizing probe expression on gene level
gene.eset <- probe.2.gene.eset(probe.eset)
# (3) getting all human KEGG gene sets
# hsa.gs <- get.kegg.genesets("hsa")
gs.file <- system.file("extdata/hsa_kegg_gs.gmt", package="EnrichmentBrowser")
hsa.gs <- parse.genesets.from.GMT(gs.file)
# (4) performing the enrichment analysis
ea.res <- sbea(method="ora", eset=gene.eset, gs=hsa.gs, perm=0)
# (5) result visualization and exploration
gs.ranking(ea.res)
ea.browse(ea.res)
# using your own tailored function as enrichment method
dummy.sbea <- function(eset, gs, alpha, perm)
{
sig.ps <- sample(seq(0,0.05, length=1000),5)
insig.ps <- sample(seq(0.1,1, length=1000), length(gs)-5)
ps <- sample(c(sig.ps, insig.ps), length(gs))
names(ps) <- names(gs)
return(ps)
}
sbea.res2 <- sbea(method="dummy.sbea", eset=gene.eset, gs=hsa.gs)
gs.ranking(sbea.res2)
Run the code above in your browser using DataLab