eqevd(x, p = 0.5, method = "mle", pwme.method = "unbiased",
plot.pos.cons = c(a = 0.35, b = 0), digits = 0)
eevd
). If x
is a numeric vector,
missip
must be between 0 and 1. The default value is p=0.5
."mle"
(maximum likelihood; the default), "mme"
(methods of moments),
"mmue"
(method of mommethod="pwme"
. The possible values are
"ubiased"
(method based on the U-statistic; the default), or
"plotting.posi
method="pwme"
and
pwme.method="plotting.position"
. The default value is
plot.pos.cons=c(a=0.35, b=0)
100*p
. The default value is digits=0
.x
is a numeric vector, eqevd
returns a
list of class "estimate"
containing the estimated quantile(s) and other
information. See estimate.object
for details.
If x
is the result of calling an estimation function, eqevd
returns a list whose class is the same as x
. The list
contains the same components as x
, as well as components called
quantiles
and quantile.method
.eqevd
returns estimated quantiles as well as
estimates of the location and scale parameters.
Quantiles are estimated by 1) estimating the location and scale parameters by
calling eevd
, and then 2) calling the function
qevd
and using the estimated values for
location and scale.eevd
, Extreme Value Distribution,
estimate.object
.# Generate 20 observations from an extreme value distribution with
# parameters location=2 and scale=1, then estimate the parameters
# and estimate the 90'th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)
set.seed(250)
dat <- revd(20, location = 2)
eqevd(dat, p = 0.9)
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Extreme Value
#
#Estimated Parameter(s): location = 1.9684093
# scale = 0.7481955
#
#Estimation Method: mle
#
#Estimated Quantile(s): 90'th %ile = 3.652124
#
#Quantile Estimation Method: Quantile(s) Based on
# mle Estimators
#
#Data: dat
#
#Sample Size: 20
#----------
# Clean up
#---------
rm(dat)
Run the code above in your browser using DataLab