
Last chance! 50% off unlimited learning
Sale ends in
ebeta(x, method = "mle")
"mle"
(maximum likelihood; the default), "mme"
(method of moments),
and "mmue"
(method of moments based on the unbiased estimator"estimate"
containing the estimated parameters and other information.
See estimate.object
for details.x
contains any missing (NA
), undefined (NaN
) or
infinite (Inf
, -Inf
) values, they will be removed prior to
performing the estimation.
Let $\underline{x} = (x_1, x_2, \ldots, x_n)$ be a vector of $n$ observations
from a beta distribution with parameters
shape1=
$\nu$ and shape2=
$\omega$.
Maximum Likelihood Estimation (method="mle"
)
The maximum likelihood estimators (mle's) of the shape parameters $\nu$ and
$\omega$ are the solutions of the simultaneous equations:
method="mme"
)
The method of moments estimators (mme's) of the shape parameters $\nu$ and
$\omega$ are given by (Forbes et al., 2011):
method="mmue"
)
These estimators are the same as the method of moments estimators except that
the method of moments estimator of variance is replaced with the unbiased estimator
of variance:
# Generate 20 observations from a beta distribution with parameters
# shape1=2 and shape2=4, then estimate the parameters via
# maximum likelihood.
# (Note: the call to set.seed simply allows you to reproduce this example.)
set.seed(250)
dat <- rbeta(20, shape1 = 2, shape2 = 4)
ebeta(dat)
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Beta
#
#Estimated Parameter(s): shape1 = 5.392221
# shape2 = 11.823233
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20
#==========
# Repeat the above, but use the method of moments estimators:
ebeta(dat, method = "mme")
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Beta
#
#Estimated Parameter(s): shape1 = 5.216311
# shape2 = 11.461341
#
#Estimation Method: mme
#
#Data: dat
#
#Sample Size: 20
#==========
# Clean up
#---------
rm(dat)
Run the code above in your browser using DataLab