
Last chance! 50% off unlimited learning
Sale ends in
enbinom(x, size, method = "mle/mme")
size
x+1
). Missing (NA
), uNA
),
undefined (NaN
), and infinite (Inf
, -Inf
) value"mle/mme"
(maximum likelihood and method of moments; the default) and
"mvue"
(minimum variance unbiased). You cannot use method="mvue"
"estimate"
containing the estimated parameters and other information.
See estimate.object
for details.x
contains any missing (NA
), undefined (NaN
) or
infinite (Inf
, -Inf
) values, they will be removed prior to
performing the estimation.
Let $\underline{x} = (x_1, x_2, \ldots, x_n)$ be a vector of $n$
independent observations from negative binomial distributions
with parameters prob=
$p$ and size=
$\underline{k}$, where
where $\underline{k} = c(k_1, k_2, \ldots, k_n)$ is a vector of $n$
(possibly different) values.
It can be shown (e.g., Forbes et al., 2011) that if $X$ is defined as:
prob=
$p$ and size=
$K$, where
egeom
, Geometric.# Generate an observation from a negative binomial distribution with
# parameters size=2 and prob=0.2, then estimate the parameter prob.
# Note: the call to set.seed simply allows you to reproduce this example.
# Also, the only parameter that is estimated is prob; the parameter
# size is supplied in the call to enbinom. The parameter size is printed in
# order to show all of the parameters associated with the distribution.
set.seed(250)
dat <- rnbinom(1, size = 2, prob = 0.2)
dat
#[1] 5
enbinom(dat, size = 2)
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Negative Binomial
#
#Estimated Parameter(s): size = 2.0000000
# prob = 0.2857143
#
#Estimation Method: mle/mme for 'prob'
#
#Data: dat, 2
#
#Sample Size: 1
#----------
# Generate 3 observations from negative binomial distributions with
# parameters size=c(2,3,4) and prob=0.2, then estimate the parameter
# prob using the mvue.
# (Note: the call to set.seed simply allows you to reproduce this example.)
size.vec <- 2:4
set.seed(250)
dat <- rnbinom(3, size = size.vec, prob = 0.2)
dat
#[1] 5 19 12
enbinom(dat, size = size.vec, method = "mvue")
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Negative Binomial
#
#Estimated Parameter(s): size = 9.0000000
# prob = 0.1818182
#
#Estimation Method: mvue for 'prob'
#
#Data: dat, size.vec
#
#Sample Size: 3
#----------
# Clean up
#---------
rm(dat)
Run the code above in your browser using DataLab