elnormCensored(x, censored, method = "mle", censoring.side = "left", ci = FALSE, ci.method = "profile.likelihood", ci.type = "two-sided", conf.level = 0.95, n.bootstraps = 1000, pivot.statistic = "z", nmc = 1000, seed = NULL, ...)
NA
), undefined (NaN
), and
infinite (Inf
, -Inf
) values are allowed but will be removed.
x
are censored.
This must be the same length as x
. If the mode of censored
is
"logical"
, TRUE
values correspond to elements of x
that
are censored, and FALSE
values correspond to elements of x
that
are not censored. If the mode of censored
is "numeric"
,
it must contain only 1
's and 0
's; 1
corresponds to
TRUE
and 0
corresponds to FALSE
. Missing (NA
)
values are allowed but will be removed.
For singly censored data, the possible values are:
"mle"
(maximum likelihood; the default),
"bcmle"
(bias-corrected maximum likelihood),
"ROS"
or "qq.reg"
(quantile-quantile regression; also called
regression on order statistics and abbreviated ROS),
"qq.reg.w.cen.level"
(quantile-quantile regression including the
censoring level),
"rROS"
or "impute.w.qq.reg"
(moment estimation based on imputation using
quantile-quantile regression; also called robust regression on order statistics
and abbreviated rROS),
"impute.w.qq.reg.w.cen.level"
(moment estimation based on imputation
using the qq.reg.w.cen.level
method),
"impute.w.mle"
(moment estimation based on imputation using the mle),
"iterative.impute.w.qq.reg"
(moment estimation based on iterative
imputation using the qq.reg
method),
"m.est"
(robust M-estimation), and
"half.cen.level"
(moment estimation based on setting the censored
observations to half the censoring level).
For multiply censored data, the possible values are:
"mle"
(maximum likelihood; the default),
"ROS"
or "qq.reg"
(quantile-quantile regression; also called
regression on order statistics and abbreviated ROS),
"rROS"
or "impute.w.qq.reg"
(moment estimation based on imputation using
quantile-quantile regression; also called robust regression on order statistics
and abbreviated rROS), and
"half.cen.level"
(moment estimation based on setting the censored
observations to half the censoring level).
See the DETAILS section for more information.
"left"
(the default) and "right"
.
ci=FALSE
.
"profile.likelihood"
(profile likelihood; the default),
"normal.approx"
(normal approximation),
"normal.approx.w.cov"
(normal approximation taking into account the
covariance between the estimated mean and standard deviation; only available for
singly censored data),
"gpq"
(generalized pivotal quantity), and
"bootstrap"
(based on bootstrapping). See the DETAILS section for more information.
This argument is ignored if ci=FALSE
.
"two-sided"
(the default), "lower"
, and
"upper"
. This argument is ignored if ci=FALSE
.
conf.level=0.95
. This argument is ignored if
ci=FALSE
.
ci.type="bootstrap"
. This
argument is ignored if ci=FALSE
and/or ci.method
does not
equal "bootstrap"
.
ci.method="normal.approx"
or
ci.method="normal.approx.w.cov"
(see the DETAILS section). The possible
values are pivot.statistic="z"
(the default) and pivot.statistic="t"
.
When pivot.statistic="t"
you may supply the argument
ci.sample size
(see below). The argument pivot.statistic
is
ignored if ci=FALSE
.
ci.method="gpq"
. The default is nmc=1000
. This argument is ignored if
ci=FALSE
.
set.seed
and used when
ci.method="bootstrap"
or ci.method="gpq"
. The default value is
seed=NULL
, in which case the current value of .Random.seed
is used.
This argument is ignored when ci=FALSE
.
prob.method
. Character string indicating what method to use to
compute the plotting positions (empirical probabilities) when method
is one of "ROS"
, "qq.reg"
, "qq.reg.w.cen.level"
,
"rROS"
, "impute.w.qq.reg"
,
"impute.w.qq.reg.w.cen.level"
, "impute.w.mle"
, or
"iterative.impute.w.qq.reg"
. Possible values are:
"kaplan-meier"
(product-limit method of Kaplan and Meier (1958)),
"nelson"
(hazard plotting method of Nelson (1972)),
"michael-schucany"
(generalization of the product-limit method due to Michael and Schucany (1986)), and
"hirsch-stedinger"
(generalization of the product-limit method due to Hirsch and Stedinger (1987)).
The default value is prob.method="michael-schucany"
. The "nelson"
method is only available for censoring.side="right"
.
See the DETAILS section and the help file for ppointsCensored
for more information.
plot.pos.con
. Numeric scalar between 0 and 1 containing the
value of the plotting position constant to use when method
is one of
"qq.reg"
, "qq.reg.w.cen.level"
, "impute.w.qq.reg"
,
"impute.w.qq.reg.w.cen.level"
, "impute.w.mle"
, or
"iterative.impute.w.qq.reg"
. The default value is plot.pos.con=0.375
.
See the DETAILS section and the help file for ppointsCensored
for more information.
ci.sample.size
. Numeric scalar indicating what sample size to
assume to construct the confidence interval for the mean if
pivot.statistic="t"
and ci.method="normal.approx"
or
ci.method="normal.approx.w.cov"
. When method
equals
"mle"
or "bcmle"
, the default value is the expected number of
uncensored observations, otherwise it is the observed number of
uncensored observations.
lb.impute
. Numeric scalar indicating the lower bound for imputed
observations when method is one of "impute.w.qq.reg"
,
"impute.w.qq.reg.w.cen.level"
, "impute.w.mle"
, or
"iterative.impute.w.qq.reg"
. Imputed values smaller than this
value will be set to this value. The default is lb.impute=-Inf
.
ub.impute
. Numeric scalar indicating the upper bound for imputed
observations when method is one of "impute.w.qq.reg"
,
"impute.w.qq.reg.w.cen.level"
, "impute.w.mle"
, or
"iterative.impute.w.qq.reg"
. Imputed values larger than this value
will be set to this value. The default is ub.impute=Inf
.
convergence
. Character string indicating the kind of convergence
criterion when method="iterative.impute.w.qq.reg"
. The possible values
are "relative"
(the default) and "absolute"
. See the DETAILS
section for more information.
tol
. Numeric scalar indicating the convergence tolerance when
method="iterative.impute.w.qq.reg"
. The default value is tol=1e-6
.
If convergence="relative"
, then the relative difference in the old and
new estimates of the mean and the relative difference in the old and new estimates
of the standard deviation must be less than tol
for convergence to be
achieved. If convergence="absolute"
, then the absolute difference in the
old and new estimates of the mean and the absolute difference in the old and new
estimates of the standard deviation must be less than tol
for convergence
to be achieved.
max.iter
. Numeric scalar indicating the maximum number of iterations
when method="iterative.impute.w.qq.reg"
.
t.df
. Numeric scalar greater than or equal to 1 that determines the
robustness and efficiency properties of the estimator when method="m.est"
.
The default value is t.df=3
.
"estimateCensored"
containing the estimated parameters
and other information. See estimateCensored.object
for details.
x
or censored
contain any missing (NA
), undefined (NaN
) or
infinite (Inf
, -Inf
) values, they will be removed prior to
performing the estimation. Let $X$ denote a random variable with a
lognormal distribution with
parameters meanlog=
$\mu$ and sdlog=
$\sigma$. Then
$Y = log(X)$ has a normal (Gaussian) distribution with
parameters mean=
$\mu$ and sd=
$\sigma$. Thus, the function
elnormCensored
simply calls the function enormCensored
using the
log-transformed values of x
.
Cohen, A.C. (1959). Simplified Estimators for the Normal Distribution When Samples are Singly Censored or Truncated. Technometrics 1(3), 217--237.
Cohen, A.C. (1963). Progressively Censored Samples in Life Testing. Technometrics 5, 327--339
Cohen, A.C. (1991). Truncated and Censored Samples. Marcel Dekker, New York, New York, 312pp.
Cox, D.R. (1970). Analysis of Binary Data. Chapman & Hall, London. 142pp.
Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics 7, 1--26.
Efron, B., and R.J. Tibshirani. (1993). An Introduction to the Bootstrap. Chapman and Hall, New York, 436pp.
El-Shaarawi, A.H. (1989). Inferences About the Mean from Censored Water Quality Data. Water Resources Research 25(4) 685--690.
El-Shaarawi, A.H., and D.M. Dolan. (1989). Maximum Likelihood Estimation of Water Quality Concentrations from Censored Data. Canadian Journal of Fisheries and Aquatic Sciences 46, 1033--1039.
El-Shaarawi, A.H., and S.R. Esterby. (1992). Replacement of Censored Observations by a Constant: An Evaluation. Water Research 26(6), 835--844.
El-Shaarawi, A.H., and A. Naderi. (1991). Statistical Inference from Multiply Censored Environmental Data. Environmental Monitoring and Assessment 17, 339--347.
Gibbons, R.D., D.K. Bhaumik, and S. Aryal. (2009). Statistical Methods for Groundwater Monitoring, Second Edition. John Wiley & Sons, Hoboken.
Gilliom, R.J., and D.R. Helsel. (1986). Estimation of Distributional Parameters for Censored Trace Level Water Quality Data: 1. Estimation Techniques. Water Resources Research 22, 135--146.
Gleit, A. (1985). Estimation for Small Normal Data Sets with Detection Limits. Environmental Science and Technology 19, 1201--1206.
Haas, C.N., and P.A. Scheff. (1990). Estimation of Averages in Truncated Samples. Environmental Science and Technology 24(6), 912--919.
Hashimoto, L.K., and R.R. Trussell. (1983). Evaluating Water Quality Data Near the Detection Limit. Paper presented at the Advanced Technology Conference, American Water Works Association, Las Vegas, Nevada, June 5-9, 1983.
Helsel, D.R. (1990). Less than Obvious: Statistical Treatment of Data Below the Detection Limit. Environmental Science and Technology 24(12), 1766--1774.
Helsel, D.R. (2012). Statistics for Censored Environmental Data Using Minitab and R, Second Edition. John Wiley \& Sons, Hoboken, New Jersey.
Helsel, D.R., and T.A. Cohn. (1988). Estimation of Descriptive Statistics for Multiply Censored Water Quality Data. Water Resources Research 24(12), 1997--2004.
Hirsch, R.M., and J.R. Stedinger. (1987). Plotting Positions for Historical Floods and Their Precision. Water Resources Research 23(4), 715--727.
Korn, L.R., and D.E. Tyler. (2001). Robust Estimation for Chemical Concentration Data Subject to Detection Limits. In Fernholz, L., S. Morgenthaler, and W. Stahel, eds. Statistics in Genetics and in the Environmental Sciences. Birkhauser Verlag, Basel, pp.41--63.
Krishnamoorthy K., and T. Mathew. (2009). Statistical Tolerance Regions: Theory, Applications, and Computation. John Wiley and Sons, Hoboken.
Michael, J.R., and W.R. Schucany. (1986). Analysis of Data from Censored Samples. In D'Agostino, R.B., and M.A. Stephens, eds. Goodness-of Fit Techniques. Marcel Dekker, New York, 560pp, Chapter 11, 461--496.
Millard, S.P., P. Dixon, and N.K. Neerchal. (2014; in preparation). Environmental Statistics with R. CRC Press, Boca Raton, Florida.
Nelson, W. (1982). Applied Life Data Analysis. John Wiley and Sons, New York, 634pp.
Newman, M.C., P.M. Dixon, B.B. Looney, and J.E. Pinder. (1989). Estimating Mean and Variance for Environmental Samples with Below Detection Limit Observations. Water Resources Bulletin 25(4), 905--916.
Pettitt, A. N. (1983). Re-Weighted Least Squares Estimation with Censored and Grouped Data: An Application of the EM Algorithm. Journal of the Royal Statistical Society, Series B 47, 253--260.
Regal, R. (1982). Applying Order Statistic Censored Normal Confidence Intervals to Time Censored Data. Unpublished manuscript, University of Minnesota, Duluth, Department of Mathematical Sciences.
Royston, P. (2007). Profile Likelihood for Estimation and Confdence Intervals. The Stata Journal 7(3), pp. 376--387.
Saw, J.G. (1961b). The Bias of the Maximum Likelihood Estimators of Location and Scale Parameters Given a Type II Censored Normal Sample. Biometrika 48, 448--451.
Schmee, J., D.Gladstein, and W. Nelson. (1985). Confidence Limits for Parameters of a Normal Distribution from Singly Censored Samples, Using Maximum Likelihood. Technometrics 27(2) 119--128.
Schneider, H. (1986). Truncated and Censored Samples from Normal Populations. Marcel Dekker, New York, New York, 273pp.
Shumway, R.H., A.S. Azari, and P. Johnson. (1989). Estimating Mean Concentrations Under Transformations for Environmental Data With Detection Limits. Technometrics 31(3), 347--356.
Singh, A., R. Maichle, and S. Lee. (2006). On the Computation of a 95% Upper Confidence Limit of the Unknown Population Mean Based Upon Data Sets with Below Detection Limit Observations. EPA/600/R-06/022, March 2006. Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C.
Stryhn, H., and J. Christensen. (2003). Confidence Intervals by the Profile Likelihood Method, with Applications in Veterinary Epidemiology. Contributed paper at ISVEE X (November 2003, Chile). http://people.upei.ca/hstryhn/stryhn208.pdf.
Travis, C.C., and M.L. Land. (1990). Estimating the Mean of Data Sets with Nondetectable Values. Environmental Science and Technology 24, 961--962.
USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery Program Implementation and Information Division. U.S. Environmental Protection Agency, Washington, D.C. Chapter 15.
USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9, 2010. Office of Resource Conservation and Recovery, Program Information and Implementation Division. U.S. Environmental Protection Agency, Washington, D.C.
Venzon, D.J., and S.H. Moolgavkar. (1988). A Method for Computing Profile-Likelihood-Based Confidence Intervals. Journal of the Royal Statistical Society, Series C (Applied Statistics) 37(1), pp. 87--94.
enormCensored
, Lognormal, elnorm
,
estimateCensored.object
.
# Chapter 15 of USEPA (2009) gives several examples of estimating the mean
# and standard deviation of a lognormal distribution on the log-scale using
# manganese concentrations (ppb) in groundwater at five background wells.
# In EnvStats these data are stored in the data frame
# EPA.09.Ex.15.1.manganese.df.
# Here we will estimate the mean and standard deviation using the MLE,
# Q-Q regression (also called parametric regression on order statistics
# or ROS; e.g., USEPA, 2009 and Helsel, 2012), and imputation with Q-Q
# regression (also called robust ROS or rROS).
# First look at the data:
#-----------------------
EPA.09.Ex.15.1.manganese.df
# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#...
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE
longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb", "Sample", "Well",
paste.row.name = TRUE)
# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2
# Now estimate the mean and standard deviation on the log-scale
# using the MLE:
#---------------------------------------------------------------
with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored))
#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): meanlog = 2.215905
# sdlog = 1.356291
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
# Now compare the MLE with the estimators based on
# Q-Q regression (ROS) and imputation with Q-Q regression (rROS)
#---------------------------------------------------------------
with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored))$parameters
# meanlog sdlog
#2.215905 1.356291
with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored,
method = "ROS"))$parameters
# meanlog sdlog
#2.293742 1.283635
with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored,
method = "rROS"))$parameters
# meanlog sdlog
#2.298656 1.238104
#----------
# The method used to estimate quantiles for a Q-Q plot is
# determined by the argument prob.method. For the functions
# enormCensored and elnormCensored, for any estimation
# method that involves Q-Q regression, the default value of
# prob.method is "hirsch-stedinger" and the default value for the
# plotting position constant is plot.pos.con=0.375.
# Both Helsel (2012) and USEPA (2009) also use the Hirsch-Stedinger
# probability method but set the plotting position constant to 0.
with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored,
method = "rROS", plot.pos.con = 0))$parameters
# meanlog sdlog
#2.277175 1.261431
#----------
# Using the same data as above, compute a confidence interval
# for the mean on the log-scale using the profile-likelihood
# method.
with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored, ci = TRUE))
#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): meanlog = 2.215905
# sdlog = 1.356291
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Confidence Interval for: meanlog
#
#Confidence Interval Method: Profile Likelihood
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 1.595062
# UCL = 2.771197
Run the code above in your browser using DataLab