# NOT RUN {
# }
# NOT RUN {
## Construct example distributions
generation_time <- list(mean = EpiNow2::covid_generation_times[1, ]$mean,
mean_sd = EpiNow2::covid_generation_times[1, ]$mean_sd,
sd = EpiNow2::covid_generation_times[1, ]$sd,
sd_sd = EpiNow2::covid_generation_times[1, ]$sd_sd,
max = 30)
incubation_period <- list(mean = EpiNow2::covid_incubation_period[1, ]$mean,
mean_sd = EpiNow2::covid_incubation_period[1, ]$mean_sd,
sd = EpiNow2::covid_incubation_period[1, ]$sd,
sd_sd = EpiNow2::covid_incubation_period[1, ]$sd_sd,
max = 30)
reporting_delay <- list(mean = log(10),
mean_sd = log(2),
sd = log(2),
sd_sd = log(1.1),
max = 30)
## Uses example case vector
cases <- EpiNow2::example_confirmed[1:40]
cases <- data.table::rbindlist(list(
data.table::copy(cases)[, region := "testland"],
cases[, region := "realland"]))
## Run basic nowcasting pipeline
## Here we reduce the accuracy of the GP approximation in order to reduce runtime
out <- regional_epinow(reported_cases = cases,
generation_time = generation_time,
delays = list(incubation_period, reporting_delay),
adapt_delta = 0.9,
samples = 2000, warmup = 200, verbose = TRUE,
cores = ifelse(interactive(), 4, 1), chains = 4)
# }
Run the code above in your browser using DataLab