# NOT RUN {
# Construct example distributions
generation_time <- list(mean = EpiNow2::covid_generation_times[1, ]$mean,
mean_sd = EpiNow2::covid_generation_times[1, ]$mean_sd,
sd = EpiNow2::covid_generation_times[1, ]$sd,
sd_sd = EpiNow2::covid_generation_times[1, ]$sd_sd,
max = 30)
incubation_period <- list(mean = EpiNow2::covid_incubation_period[1, ]$mean,
mean_sd = EpiNow2::covid_incubation_period[1, ]$mean_sd,
sd = EpiNow2::covid_incubation_period[1, ]$sd,
sd_sd = EpiNow2::covid_incubation_period[1, ]$sd_sd,
max = 30)
reporting_delay <- list(mean = log(10),
mean_sd = 0.8,
sd = log(2),
sd_sd = 0.1,
max = 30)
# Uses example case vector from EpiSoon
cases <- EpiNow2::example_confirmed[1:30]
cases <- data.table::rbindlist(list(
data.table::copy(cases)[, region := "testland"],
cases[, region := "realland"]))
# Run basic nowcasting pipeline
regional_out <- regional_epinow(reported_cases = cases,
generation_time = generation_time,
delays = list(incubation_period, reporting_delay),
samples = 2000, warmup = 200, cores = 4,
adapt_delta = 0.95, chains = 4, verbose = TRUE,
summary = FALSE)
results_dir <- tempdir()
regional_summary(regional_output = regional_out$regional,
reported_cases = cases,
summary_dir = results_dir,
region_scale = "Country", all_regions = FALSE)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab