Learn R Programming

EquiTrends (version 1.0.0)

sim_paneldata: Simulating a panel data for a binary treatment

Description

sim.paneldata generates a panel data set with N cross-sectional units and tt time periods. The data set includes a binary treatment variable, a set of placebo variables, and a set of additional regressors. The data set can be generated under homoskedasticity or heteroskedasticity, and/or AR(1) errors.

Usage

sim_paneldata(
  N = 500,
  tt = 5,
  beta = rep(0, tt),
  p = 1,
  gamma = rep(1, p),
  eta = rep(0, N),
  lambda = rep(0, tt),
  het = 0,
  phi = c(0),
  sd = 1,
  burnins = 100
)

Value

A data.frame with the following columns:

ID

The cross-sectional unit identifier

period

The time period identifier

Y

The dependent variable

G

The binary treatment variable

X_1, ..., X_p

The additional regressors

Arguments

N

The number of cross-sectional units in the panel-data

tt

The number of time periods in the panel-data

beta

The vector of coefficients for the placebo variables. Must be of size tt.

p

The number of additional regressors

gamma

The vector of coefficients for the additional regressors

eta

The vector of fixed effects. Must be of size N.

lambda

The vector of time effects. Must be of size tt.

het

The heteroskedasticity parameter. Must be 0 or 1: het = 1 indicates that the error terms are generated under heteroskedasticity, het = 0 indicates the error terms are generated under homoscedasticity.

phi

The AR(1) parameter for the error terms. Must be in the interval [0,1).

sd

The standard deviation of the error terms. Must be a positive number.

burnins

The number of burn-ins for the AR(1) process. Must be a positive integer.

Examples

Run this code
sim_data <- sim_paneldata(N = 500, tt = 5, beta = rep(0, 5), p=1, 
                          gamma = rep(0,1), het = 1, phi = 0.5, sd = 1, 
                          burnins = 100)

Run the code above in your browser using DataLab