library(EstimationTools)
#--------------------------------------------------------------------------------
# First example: Scaled empirical TTT from 'mgus1' data from 'survival' package.
TTT_1 <- TTTE_Analytical(Surv(stop, event == 'pcm') ~1, method = 'cens',
data = mgus1, subset=(start == 0))
plot(TTT_1, type = "p")
#--------------------------------------------------------------------------------
# Second example: Scaled empirical TTT using a factor variable with 'aml' data
# from 'survival' package.
TTT_2 <- TTTE_Analytical(Surv(time, status) ~ x, method = "cens", data = aml)
plot(TTT_2, type = "l", lty = c(1,1), col = c(2,4))
plot(TTT_2, add = TRUE, type = "p", lty = c(1,1), col = c(2,4), pch = 16)
#--------------------------------------------------------------------------------
# Third example: Non-scaled empirical TTT without a factor (arbitrarily simulated
# data).
y <- rweibull(n=20, shape=1, scale=pi)
TTT_3 <- TTTE_Analytical(y ~ 1, scaled = FALSE)
plot(TTT_3, type = "s", col = 3, lwd = 3)
#--------------------------------------------------------------------------------
# Fourth example: TTT plot for 'carbone' data from 'AdequacyModel' package
if (!require('AdequacyModel')) install.packages('AdequacyModel')
library(AdequacyModel)
data(carbone)
TTT_4 <- TTTE_Analytical(response = carbone, scaled = TRUE)
plot(TTT_4, type = "l", col = "red", lwd = 2, grid = TRUE)
#--------------------------------------------------------------------------------
Run the code above in your browser using DataLab