# NOT RUN {
####################################
# Use data from R package ccChooser
####################################
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
####################################
# EvaluateCore
####################################
dist.evaluate.core(data = ec, names = "genotypes", quantitative = quant,
qualitative = qual, selected = core)
# }
# NOT RUN {
####################################
# Compare with corehunter
####################################
library(corehunter)
# Prepare phenotype dataset
dtype <- c(rep("RD", length(quant)),
rep("NS", length(qual)))
rownames(ec) <- ec[, "genotypes"]
ecdata <- corehunter::phenotypes(data = ec[, c(quant, qual)],
types = dtype)
# Compute average distances
EN <- evaluateCore(core = rownames(dactylis_CC), data = ecdata,
objective = objective("EN", "GD"))
AN <- evaluateCore(core = rownames(dactylis_CC), data = ecdata,
objective = objective("AN", "GD"))
EE <- evaluateCore(core = rownames(dactylis_CC), data = ecdata,
objective = objective("EE", "GD"))
EN
AN
EE
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab