data("cassava_CC")
data("cassava_EC")
ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL
core <- rownames(cassava_CC)
quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
"ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
"ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
"PSTR")
ec[, qual] <- lapply(ec[, qual],
function(x) factor(as.factor(x)))
dist.evaluate.core(data = ec, names = "genotypes", quantitative = quant,
qualitative = qual, selected = core)
# \donttest{
####################################
# Compare with corehunter
####################################
library(corehunter)
# Prepare phenotype dataset
dtype <- c(rep("RD", length(quant)),
rep("NS", length(qual)))
rownames(ec) <- ec[, "genotypes"]
ecdata <- corehunter::phenotypes(data = ec[, c(quant, qual)],
types = dtype)
# Compute average distances
EN <- evaluateCore(core = rownames(cassava_CC), data = ecdata,
objective = objective("EN", "GD"))
AN <- evaluateCore(core = rownames(cassava_CC), data = ecdata,
objective = objective("AN", "GD"))
EE <- evaluateCore(core = rownames(cassava_CC), data = ecdata,
objective = objective("EE", "GD"))
EN
AN
EE
# }
Run the code above in your browser using DataLab