Learn R Programming

EvidenceSynthesis (version 0.5.0)

computeConfidenceInterval: Compute the point estimate and confidence interval given a likelihood function approximation

Description

Compute the point estimate and confidence interval given a likelihood function approximation

Usage

computeConfidenceInterval(approximation, alpha = 0.05)

Value

A data frame containing the point estimate, and upper and lower bound of the confidence interval.

Arguments

approximation

An approximation of the likelihood function as fitted using the approximateLikelihood() function.

alpha

The alpha (expected type I error).

Details

Compute the point estimate and confidence interval given a likelihood function approximation.

Examples

Run this code
# Simulate some data for this example:
populations <- simulatePopulations()

cyclopsData <- Cyclops::createCyclopsData(Surv(time, y) ~ x + strata(stratumId),
  data = populations[[1]],
  modelType = "cox"
)
cyclopsFit <- Cyclops::fitCyclopsModel(cyclopsData)
approximation <- approximateLikelihood(cyclopsFit, "x")
computeConfidenceInterval(approximation)

Run the code above in your browser using DataLab