###This example uses the syllable dataset for oscine songbirds Weir & Wheatcroft 2011
data(bird.syllables)
attach(bird.syllables)
#STEP 1 Correct Euclidean distances for sampling and measurement bias
DIST_cor <- MScorrection(nA=bird.syllables$number_individuals_Species1,
nB=bird.syllables$number_individuals_Species2,
VarA=bird.syllables$Species1_PC2_var,
VarB=bird.syllables$Species2_PC2_var,
DIST_actual=abs(bird.syllables$Species1_PC2_mean -
bird.syllables$Species2_PC2_mean))
#STEP 2 Test all models on oscines only (in which song has a strong
#culturally transmitted component)
DIST <- subset(DIST_cor, subset = (bird.syllables$Suboscine == "oscine"))
TIME <- subset(bird.syllables$TIME,subset = (bird.syllables$Suboscine == "oscine"))
GRAD <- subset(bird.syllables$GRAD,
subset = (bird.syllables$Suboscine == "oscine"))
FIT5 <- model.test.sisters(DIST=DIST, TIME=TIME, GRAD=GRAD, models=models)
#The best fit model in FIT5 is BM_linear in which tropical species have a
#much slower rate than temperate species.
#STEP 3 run the profile likelihood
Profile.like.CI(DIST=DIST, TIME=TIME, GRAD=GRAD, meserr1 = 0, meserr2 = 0,
like=FIT5[1,2], par=c(FIT5[5,2], FIT5[6,2]), MODEL="BM_linear", MULT=1,
test.values.par1 = c((0:100)*0.001), test.values.par2 = c((33:100)*0.0001),
p_starting="NULL")#end dontrunRun the code above in your browser using DataLab