# NOT RUN {
# See step 5 of the Practical Introduction to ExpertChoice vignette.
# Step 1
attrshort = list(condition = c("0", "1", "2"),
technical =c("0", "1", "2"),
provenance = c("0", "1"))
#Step 2
# ff stands for "full fatorial"
ff <- full_factorial(attrshort)
af <- augment_levels(ff)
# af stands for "augmented factorial"
# Step 3
# Choose a design type: Federov or Orthogonal. Here an Orthogonal one is used.
nlevels <- unlist(purrr::map(ff, function(x){length(levels(x))}))
fractional_factorial <- DoE.base::oa.design(nlevels = nlevels, columns = "min34")
# Step 4
# The functional draws out the rows from the original augmented full factorial design.
colnames(fractional_factorial) <- colnames(ff)
fractional <- search_design(ff, fractional_factorial)
# Step 5! - The fractional_factorial_efficiency function
# The formula requires reference to the original attributes of the design.
# Check for the main effects.
fractional_factorial_efficiency(~ condition + technical + provenance, fractional)
# Check for the main effects with some interaction.
fractional_factorial_efficiency(~ condition + technical * provenance, fractional)
# }
Run the code above in your browser using DataLab