# NOT RUN {
################################################
# The following examples provide the results of
# the approximate bayesian analysis in Table 1.1
# of the paper Beranger and Padoan (2015)
################################################
## Load datasets :
data(pollution)
Nsim <- 50e+4
Nbin <- 30e+4
MCpar <- 0.35
Hpar.pb <- list(mean.alpha=0, mean.beta=3,sd.alpha=3, sd.beta=3)
Hpar.hr <- list(mean.lambda=0, sd.lambda=3)
Hpar.di <- list(mean.alpha=0, sd.alpha=3)
Hpar.et <- list(mean.rho=0, mean.mu=3,sd.rho=3, sd.mu=3)
## Using the PNS dataset
# }
# NOT RUN {
est.pb.PNS <- posteriorMCMC(Nsim, Nbin, Hpar.pb, MCpar, PNS, seed=14342, model='Pairwise')
est.pb.PNS$emp.mean
est.pb.PNS$emp.sd
est.pb.PNS$BIC
est.hr.PNS <- posteriorMCMC(Nsim, Nbin, Hpar.hr, MCpar, PNS, seed=14342, model='Husler')
est.hr.PNS$emp.mean
est.hr.PNS$emp.sd
est.hr.PNS$BIC
est.di.PNS <- posteriorMCMC(Nsim, Nbin, Hpar.di, MCpar, PNS, seed=14342, model='Dirichlet')
est.di.PNS$emp.mean
est.di.PNS$emp.sd
est.di.PNS$BIC
est.et.PNS <- posteriorMCMC(Nsim, Nbin, Hpar.et, MCpar, PNS, seed=14342, model='Extremalt',c=0.1)
est.et.PNS$emp.mean
est.et.PNS$emp.sd
est.et.PNS$BIC
# }
# NOT RUN {
## Using the NSN dataset
# }
# NOT RUN {
est.pb.NSN <- posteriorMCMC(Nsim, Nbin, Hpar.pb, MCpar, NSN, seed=14342, model='Pairwise')
est.pb.NSN$emp.mean
est.pb.NSN$emp.sd
est.pb.NSN$BIC
est.hr.NSN <- posteriorMCMC(Nsim, Nbin, Hpar.hr, MCpar, NSN, seed=14342, model='Husler')
est.hr.NSN$emp.mean
est.hr.NSN$emp.sd
est.hr.NSN$BIC
est.di.NSN <- posteriorMCMC(Nsim, Nbin, Hpar.di, MCpar, NSN, seed=14342, model='Dirichlet')
est.di.NSN$emp.mean
est.di.NSN$emp.sd
est.di.NSN$BIC
est.et.NSN <- posteriorMCMC(Nsim, Nbin, Hpar.et, MCpar, NSN, seed=14342, model='Extremalt',c=0.1)
est.et.NSN$emp.mean
est.et.NSN$emp.sd
est.et.NSN$BIC
# }
# NOT RUN {
## Using the PNN dataset
# }
# NOT RUN {
est.pb.PNN <- posteriorMCMC(Nsim, Nbin, Hpar.pb, MCpar, PNN, seed=14342, model='Pairwise')
est.pb.PNN$emp.mean
est.pb.PNN$emp.sd
est.pb.PNN$BIC
est.hr.PNN <- posteriorMCMC(Nsim, Nbin, Hpar.hr, MCpar, PNN, seed=14342, model='Husler')
est.hr.PNN$emp.mean
est.hr.PNN$emp.sd
est.hr.PNN$BIC
est.di.PNN <- posteriorMCMC(Nsim, Nbin, Hpar.di, MCpar, PNN, seed=14342, model='Dirichlet')
est.di.PNN$emp.mean
est.di.PNN$emp.sd
est.di.PNN$BIC
est.et.PNN <- posteriorMCMC(Nsim, Nbin, Hpar.et, MCpar, PNN, seed=14342, model='Extremalt',c=0.1)
est.et.PNN$emp.mean
est.et.PNN$emp.sd
est.et.PNN$BIC
# }
# NOT RUN {
################################################
# The following examples provide the results of
# the approximate bayesian analysis in Table 1.2
# of the paper Beranger and Padoan (2015)
################################################
# Using the PNNS dataset
# }
# NOT RUN {
est.pb.PNNS <- posteriorMCMC(Nsim, Nbin, Hpar.pb, MCpar, PNNS, seed=14342, model='Pairwise')
est.pb.PNNS$BIC
est.hr.PNNS <- posteriorMCMC(Nsim, Nbin, Hpar.hr, MCpar, PNNS, seed=14342, model='Husler')
est.hr.PNNS$BIC
est.di.PNNS <- posteriorMCMC(Nsim, Nbin, Hpar.di, MCpar, PNNS, seed=14342, model='Dirichlet')
est.di.PNNS$BIC
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab